

Processes Migration through Virtualization in a Computing Community

Shu Zhang, Mujtaba Khambatti, Partha Dasgupta
Arizona State University
Tempe, AZ 85287-5406

U.S.A.

ABSTRACT

The Computing Communities project uses an innovative
approach to integrate the ubiquitous desktop with an
underlying distributed system. The approach involves
unobtrusive modification of functionality of existing
systems by decoupling the application process from the
operating system. Using this, we are building an
integrated distributed computing platform. Process
migration is an underlying mechanism that is key to
enabling the Computing Communities framework.

We migrate regular, general-purpose computations,
running shrink-wrapped binaries. By augmenting the
decoupling of applications with techniques that
checkpoint and restore the state of a process, we are able
to migrate a process within our distributed environment.
In this paper we outline our experiences in migrating
Win32 process running over Windows 2000.

KEY WORDS: Parallel/distributed computing
systems, API Interception, Process Migration.

1. INTRODUCTION

Over the past two decades, research in the distributed
systems arena, has yielded a set of parallel processing
platforms, (such as PVM [1], MPI [2], Calypso [3], Linda
[4], Treadmarks [5], Brazos [6] and so on) and many
distributed Operating Systems (such as Amoeba [7],
Mach [8], Clouds [9], Chorus [10], and so on). However,
this research failed to bring the power of distributed
general-purpose computation to the desktop. We believe
that this can be attributed to three major reasons.

First, enhancements to existing system capabilities can
potentially invoke system-wide modifications that can
become expensive [11]. This increases cost of
development and has therefore not been popular amongst
researchers. Second, the void of applications for a new
platform, also called the application development barrier
[12] makes such platforms unattractive. Finally, legacy
applications need to be rewritten in order to use the
features of the new platform [11]. Again this leads to the
increase in the cost of development and deployment.

We feel that the solution to this problem calls for
extending current desktop operating system technology to
provide the attributes of a distributed system. Further,
existing shrink-wrapped applications must be enabled to
execute over this distributed environment and benefit
from the platform’s ability to perform distributed
scheduling, process migration, failure masking, load
balancing and so on. The system that we are attempting to
build is an integrated distributed computing platform that
we call as a “Computing Community” (see section 1.1).
Our efforts demonstrate the power of unobtrusive
modification of functionality of existing systems without
any change to the binaries of the base operating system or
its application base.

In this paper, we describe how such unobtrusive
modification of functionality can be achieved by using
virtualization [13, 14] and well-known API Interception
technology [15] to decouple the application process from
the operating system. We further illustrate how it can be
used to allow processes to be migrated within a
computing community. The processes in our system
would attain attributes such as mobility, collaborative
work, distributed systems management, automatic
reconfiguration, and fault tolerance [16]. Finally, we
outline recent experiences with migrating Win32
processes running over Windows 2000, and identify
several research issues that require further exploration.

1.1 COMPUTING COMMUNITIES

Our research is part of a larger project called “Computing
Communities” (or CC) [13]. The goal of the CC project is
to enable a group of computers to act like a large
community of systems, which grows or shrinks based on
dynamic resource requirements through the scheduling
and migration of processes, applications and resource
allocations between systems—all transparently.

The computers participating in the CC utilize a standard
operating system and run shrink-wrapped applications.
The novelty of the CC approach is that it requires no
application redesign, re-coding or recompiling. Binary
compatibility is assured while adding new services and

features such as transparent distribution, global
scheduling, fault tolerance, and application adaptation.

The key technique to achieve such a system is the creation
of a “virtualizing Operating System” or vOS. The main
theme in the vOS is, of course “virtualization”.

1.2 VIRTUALIZATION

Virtualization is the decoupling of the application process
from its physical environment [12, 11]. That is, a process
runs in a virtual environment with connections to a virtual
screen and virtual keyboard. The application uses virtual
files, virtual network connections, and other virtual
resources. For every virtual resource that the process
needs there exists a mapping, provided by the virtual
environment, to a physical resource of the operating
system. When the application attempts to access a virtual
resource through a system call, the virtual environment
intercepts that call and changes the parameters of the
system call to access the actual physical resource. This
enables the application to use remote resources as though
they were local and change the mapping between the
virtual resource and physical resource dynamically.

1.3 API INTERCEPTION

The mechanism used by the virtual environment to
intercept system calls is known as API Interception [13].
In the Windows 2000 Dynamic Linked Library (DLL)
scheme, when the application is loaded, the API
references are resolved to a table of addresses in the user
space called the Import Address Table (IAT), and filled in
at run time. By modifying the addresses contained in the
IAT, the application call is redirected to an alternate API
entry point. Inserting code at that entry point introduces
new functionality that creates the opportunity to track the
request and use of resources by the process. This method
is further described in [15]

The virtual environment begins to intercept system API
calls at the very beginning of the process to guarantee that
all the resources used by the process are virtual resources
and that the process is completely decoupled from the
physical environment. Therefore, at the point of creation
of the process, the API Interception DLL is injected into
the process space. Thus, we achieve unobtrusive
modification of functionality of the existing system.

In this paper we describe the mechanism by which
virtualization and API Interception can allow processes to
migrate within a Computing Community. We further
illustrate the techniques that are necessary to checkpoint
and restore the process state in order that the process can
start on the new machine in the same state as it was before
migration.

2. MOTIVATION

Traditionally, process migration mechanisms have been
used to load balance processors in a distributed system
and approaches for supporting them transparent to the
application have required extensive kernel support. We
have described the two techniques that were most
commonly used to provide process migration capability.

• Many programming systems and batch environments

that rely on a checkpoint/restart strategy for
spreading computations across a network of
machines link the process to a user-level migration
library, which handles process state maintenance and
migration facilities. However, this method restricts
the process from being involved in GUI interactions,
open network connections, or accessing file systems.
Example systems include Condor [17], Emerald [18],
Charlotte [19], and Chime [14, 20] programming
systems, as well as migration-capable extensions of
PVM [21] such as MPVM [22] and DynamicPVM
[23].

• Most distributed operating systems with support for

process migration such as Chorus [10], MOSIX [24],
Amoeba [7], SPIN [25], and Sprite [26] relocate the
inner core of the process along with related kernel
state using system mechanisms. They optionally
leave behind a proxy on the source site to handle any
“residual dependencies” (e.g. active network
connections). Such a strategy can migrate any general
process, but incurs significant run-time overheads in
addition to operating system complexity and
maintainability costs.

Despite the large number of process migration prototypes
described in literature, relatively few applications have
been shown to benefit from these mechanisms. Several of
the distributed systems referred to above have used
process migration for load-balancing jobs in a network,
and parallelizing coarse-grained applications certain
scientific computations, with results in literature reporting
good throughput improvements.

Unfortunately, these applications are no longer viewed as
compelling, particularly given the ready availability of
small- to moderate-sized SMPs. Nonetheless, we
attempted to employ process migration to provide
processes in a Computing Community with attributes such
as collaborative work, distributed systems management,
automatic reconfiguration, and fault tolerance [16]. In
addition, we feel that general-purpose process migration
affords significant far-reaching benefits, making it useful
for much more than just load balancing:

• Consider a user actively using a complex application

(such as a spreadsheet with lots of macros) that now
wants to be able to work on another computer at
another location without closing the application,

Operating System

Loader

Application

CreateProcess()

 Inject Injected
DLL

Figure 1: Process creation and DLL injection by Loader process.

needing therefore to migrate the application. In
another scenario, the user leaves the application
running at work and then goes home and realizes she
needs to do additional work. Process migration
support would enable her to simply move the
application over to the home machine. Further, the
seamless “migratability” of applications between
desktops and laptops can add another dimension to
mobile computing.

• If we can migrate the application and its screen and

its active connections to networks and files, then
using the same mechanism, we should be able to
move the screen without moving the application
process. Decoupling the various external interfaces of
a process (GUI, network connections, files, etc.) from
the internal state of the process facilitates many
interesting collaborative work situations. Taking this
one step further, decoupling the internal process state
from its interactions with operating system
components such as dynamically linked libraries
(DLLs) permits on-the-fly replacement of DLLs.

• The essence of process migration is the ability to

capture all of the state that describes process
behavior. Given such capabilities, application
functionality can be extended using novel
abstractions such as “active versioning”. For
example, while a user is working on developing
complex macros for a spreadsheet, he might decide to
do some risky experimentation without necessarily
saving the current state (not just the files but the
entire environment). It is only later that the user
decides whether to commit these changes or revert
back to an earlier state.

• Consider a server running a set of objects being

actively used by a lot of external clients over the
Internet. The system administrator needs to shut this
machine off for maintenance but does not want to
disrupt the service. The server along with its state and
even active network connections can be migrated to
another machine.

This focus on the novel capabilities provided by process
migration mechanisms motivates a different approach.
We aimed to be able to cleanly migrate any application
process (without leaving any trace behind), irrespective of
the behavior of the process. We do not want access to
source code of the application, to modify the application
or to re-link the application. While achieving this might
seem very difficult, we next describe our approach that
meets these requirements.

3. ARCHITECTURE

The process migration facility relies on a set of
mechanisms to provide its services. It consists of a DLL

that we call the PM-DLL (or Process Migration DLL).
For all processes that are to be migratable, we inject the
PM-DLL into the process and create a control thread in
the process. This thread then reroutes all API accesses
made by other threads in the process, by changing the
entries in the DLL import address table. Hence, all
relevant Win32 calls are now routed thought stubs in the
PM-DLL.

The virtual environment is setup by the loader process
(figure 1). The loader has two main responsibilities: to
create a new process in a suspended state and to inject
into it the DLL that will perform the API Interception. In
the case that the application is being restarted on a new
machine, the loader process would need to detect this, as
it is partly responsible for restoring the process’s state.

This responsibility is also shared by the PM-DLL’s
control thread. Additionally, the PM-DLL contains logic
to checkpoint the process state just before migration. The
PM-DLL is thus multi-threaded in order that it can
perform all its duties simultaneously.

The loader also serves one more purpose; to notify the
PM-DLL to begin check-pointing the application process
state when the user requests that the application be
migrated to a new location.

4. IMPLEMENTING THE MIGRATION

A user on a computer participating in a CC can request
that a local process of an application created by the loader
be migrated to a machine of her choice. In order to make
this happen, the loader and the PM-DLL save relevant
state information pertaining to the process into binary
files on some globally accessible storage. Thereafter the
process ceases to exist on that machine. On the target
machine, chosen by the user to run the migrated process,
the loader is utilized to create a new process of the same
application. While doing so, the loader becomes aware
that the newly created suspended process is the result of a

Figure 3: A process (P) in virtual execution environment in the CC
and Translation of virtual handles to actual physical handles

migration and that there exists state information on files
somewhere that must be used to bring this process to its
last running state. As a result, the loader begins restoring
the state information from the files. The PM-DLL
completes this restoration and now the new process
appears to the user in the same form as the earlier process,
giving the perception of migration.

Following are the components of the process that together
form its state.

Memory and Resources

Threads

Network connections

Graphical User Interface (GUI)

We describe the method to save and restore each of these
components. Collectively, this logic would enable the
virtualized process to be migrated within a CC.

4.1 MEMORY AND RESOURCES

A running process affects the contents of its heaps and
data section. In order to provide the process created on the
new machine the same state as the recently migrated
process, these heaps and data sections have to be
recreated with the exact same data as in the earlier
process. In a similar way, resources, like files, would have
to be made available for the new process to use.

Data Section: The data section of a process consists of
many regions. All except the .data region contain global
data and constants and are therefore of no significance to
process migration. These regions are automatically
created from the executable when the process is started.

At the point of migration for a process, the control thread
that exists as part of the injected DLL code identifies the
.data region and saves its contents into a binary file on
some globally accessible storage. To discover the location
and size of this region, the control thread uses relevant
headers from the Portable Executable File Format [27].

As part of state information that is written onto the newly
created suspended process on the target machine, the
injected control thread retrieves the binary information
contained in the designated file and writes its contents
into the memory region identified for .data.

Heaps: Information about the heaps is obtained from the
process environment block (PEB). The PEB contains
information about the number of heaps in the process and
their addresses. Further, each VirtualAlloc() call is
intercepted and information about the allocated memory

is stored in data structures maintained by the injected
DLL.
At the point of migration, the heap addresses and their
allocated regions of memory can be saved into globally
accessible binary files. Later, restoration will cause them
to be created at exactly at the same locations in the
process’s virtual address space on the target machine.

Resources: The vOS implements the functionality to
virtualize the resources by controlling the mapping
between the physical resources (seen by the operating
system) and virtual handles (seen by the application). In
general, virtual handles represent the software resources
like file handles, graphics handles and network handles
(Figure 3). The application uses the virtual handles as if
they are OS generated. When the application passes a
virtual handle to a system call, the vOS intercepts that call
and passes the actual physical handle to the system call.
Therefore even if we do not get the same object handle
after migration, this handle translation performed by the
vOS enables the process to continue as though there was
no change to the resources it holds. Handle translation is
implemented in the form of a Handle Translation Table
that is maintained by the injected DLL code.

4.2 THREADS

A thread is the basic unit scheduled by the operating
system. Every process starts from a single primary thread
and can create additional threads from any of its threads.
From a process migration view, all the currently existing
threads have to be restored with the same state on the
destination machine.

To discover the threads of a process, we intercept the
CreateThread() function and save the parameters that
were used in the call into a data structure called the
Thread Table. A thread can be in any one of the following
states at the point of migration: running, suspended, wait
and terminated. Depending on the state of the thread at
the point of migration, the PM-DLL’s control thread
treats it differently.

 CC

File
System

Network

Open(vir_h)
Open(real_h)

P
 Screens

Figure 2: Components of a Process’ State

4.2.1 THREAD CONTEXT AND STACK

At the point of migration, all process threads, irrespective
of state, are suspended. The context of each thread is then
obtained using the GetThreadContext() system call and
saved into a binary file on globally accessible storage. At
the destination machine, the loader creates all threads in a
suspended state exactly how they were on the source
machine. After the restoration of the stack and heaps,
each context file is read to retrieve the context
information into a data structure. This is then given to the
SetThreadContext() API to restore the context for each
thread.

Saving and restoring the stack involves a little more than
a system call. When a thread is created, the system
reserves a region in the address space for the stack and
makes the second page of that region, the guard page, by
using the PAGE_GUARD flag. This page acts as a
boundary for the stack and allows the stack storage to
increase only when the thread requires it. The flag serves
as a good indicator of the stack. By using the
VirtualQuery() function, we query the whole usable
memory area and locate a region whose protection
attributes indicate the existence of a guard page. Thus we
have located the stack. The query function also gives us
the base address, and size of the pages we query. This
information can be stored in a binary file on globally
accessible storage, along with the stack data.

Soon after it creates the new process in a suspended state,
the loader will restore the stack and heap information
using the WriteProcessMemory() system call. After this, it
employs the CreateRemoteThread() system call and the
information from the Thread Table to recreate all threads
in suspended state.

4.2.2 THREAD STATES

Threads in Running State: For threads in the running
state, restoration is very simple. At the destination
machine, the loader creates all threads in a suspended
state with the parameters that were recorded in the Thread
Table. Each thread’s context is set using the
SetThreadContext() system call. Consequently, the
operating system’s scheduler determines the next thread
to schedule.

Threads in Suspended State: In the case of threads that
are to be recreated in a suspended state, the control thread
at the destination would need to pass up resuming the
thread after its context has been set. We set a field in the
Thread Table to indicate whether the control thread
should let this thread remain in a suspended state or
resume it for operating system scheduling. Our discovery
of the suspended state of a thread is due to the
interception of the SuspendThread() and ResumeThread()
system calls by the PM-DLL.

Threads in Wait State: The migration of a thread that is
in the wait state is not as trivial. Apart from recognizing
and remembering the state of the thread, we also need to
record the objects that the thread is waiting for. The
recreation of this at the destination machine is
complicated by the following two factors:

1. Thread state is maintained inside the kernel and is

inaccessible due to the lack of a programmer’s
interface. So we cannot create a thread in a wait state.

2. The loader process recreates threads, and all the

objects are recreated by the injected PM-DLL’s
control thread. Both the loader and the PM-DLL exist
in separate process address spaces. Therefore neither
of them can make any created thread wait on
particular objects.

A thread might be in a wait state because it has called a
wait function like WaitForSingleObject(). Here we use
the example of a thread that has called the
WaitForSingleObject() function to explain how we
implement the migration of threads in this state. On
calling this function, the thread will enter into a wait state
if the object is not signaled. The instruction pointer points
to the line following the function call so that when this
function returns, the calling thread runs from the code
pointed to by the instruction pointer. If the user requests
migration when the calling thread is waiting and before
the object has been signaled, we cause the function to
return with a hard-coded return value. This is possible
because the PM-DLL has intercepted this function call
and redirected the call to a wrapper function. It is the
wrapper function that in reality returns with the hard-
coded return value. This value is stored in a variable and
is not the same as any valid return value that the function
could have had. At the destination machine, during
restoration, the PM-DLL’s control thread executes a
conditional statement that checks the value of this
variable and determines if the wait function was forced to
return due to a migration request. The PM-DLL knows to
perform this check because the wait functions have been
intercepted and logged when they were called at the
source machine. In the case that the variable holding the
return value of the function has the specific hard-coded
value, we cause the wait function to be executed again.
Therefore, the thread continues to wait on the same
objects.

Threads in Terminated State: Threads can reach the
terminated state in one of the following three ways: by
calling ExitThread() or TerminateThread(), or, by a
return statement at the end of the thread function. The
PM-DLL intercepts the ExitThread() and
TerminateThread() call and deletes the thread handle
from the Thread Table if the call is made. Thereafter the
thread record is not available and the thread is not
recreated.

Records of threads that terminate due to a return
statement are not removed from the Thread Table until
the user requests migration. At this point, the control
thread tries to suspend all threads in order to save relevant
information for recreation. If the SuspendThread() call
fails, the control thread assumes that the thread had
reached a terminated state. The record of the thread
handle is then removed from the Thread Table.

Synchronization objects: For the purpose of
synchronization, threads sometimes create kernel objects
like, events, timers, semaphores and mutexes. The states
of these kernel objects will cause the thread to transition
its own state. Therefore keeping track of the state of these
kernel objects would help us recreate all threads in their
original state after the migration.

Intercepting the system calls that create these kernel
objects or change their state gives the PM-DLL
information that can be used during restoration.

4.3 NETWORK CONNECTIONS

This paper deals only with migrating processes created by
a loader within a CC that may have active network
connections with another process also created by a loader
within the same CC.

At process creation, the injected DLL intercepts all the
important socket APIs and wraps them with wrapper
APIs. Further, it creates a socket thread for the purpose of
closing and restoring network connections when the
process migrates to a new machine.

Migrating a client process: Migrating a client process is
a bit different from migrating a server process. When a
client has to migrate, the control thread saves information
about all the sockets into a binary file on some globally
accessible storage. The control thread then sends the port
number of the client socket and a request to close the
connection to the socket thread on the server. When it
receives an acknowledgement from the socket thread on
the server, it closes the connection and reports this to the
server. Now, the socket thread on the server also closes
its connection and waits for a message from the migrated
client process.

After the client process is restarted on a new machine, the
control thread restores the process state and reads the
socket information from the binary file. It also retrieves
the server IP address and port number from the file. The
control thread then sends a message to the socket thread
on the server that it is ready to reopen the connections. As
a result the server’s socket thread creates a socket that
binds to the same port as it was before and waits for the
connection. The client’s control thread then makes a
connection to the server and saves the new socket handle.

However, due to virtualization, the application still sees
the same virtual socket handle.

Migrating a server process: The same method is
followed when the server is migrated from one machine
to another except that when the server is migrated to the
new machine, it sends the IP address of the new machine
to the client’s socket thread. This allows the client to
know the server’s new location and re-establish all the
connections.

4.4 GRAPHICAL USER INTERFACE

The window object is inserted into the Handle Table of
the injected DLL by intercepting the CreateWindow() and
CreateWindowEx() calls. In addition, the injected DLL
maintains a history of messages that were sent to the
window object by intercepting SendMessage() and
DispatchMessage().

During restoration, the control thread is charged with re-
creating all the objects that are present within the Handle
Table. The window object is thus created to look exactly
like the original process window. The window’s message
pump checks the history of messages and sends them
again to the new window.

5. PERFORMANCE

The performance tests were run on Intel Pentium
machines with 1 GHz CPU frequency and 512 MB RAM.
In our tests we measured the following parameters:

1. Time required for loading the process without any

virtual environment or PM-DLL.
2. Time required for loading the PM-DLL and creating

the virtual environment.
3. Time required to checkpoint and restore state

information.
4. Space requirements in order to store the state

information between the checkpoint and restore
phase.

We used 2 processes for the measurements. Process A ran
a dummy Win32 program consisting of 2 threads, 10
heaps, 15 objects and invoked some file I/O API’s.
Process B ran the unmodified Wordpad executable
available with the Windows operating system.

Process Creation: The first measurement is the time
taken by Windows 2000 to create the processes. Process
A takes 1.49 milliseconds to be created and Process B
takes 1.53 milliseconds (the difference in negligible).

Loading the PM-DLL: The number of API calls that
need to be intercepted by wrapper functions varies in each

application. The size of the PM-DLL is directly
proportional to this number. The PM-DLL for Process A
had wrappers for 24 API calls, while the PM-DLL for
Process B had wrappers for 340 API calls.

The time taken to install the wrappers for these processes
(after the process has been started) was 33 milliseconds
for Process A and 259 milliseconds for Process B. The
difference shows the extra work (and overhead) of
wrapping a larger number of API calls.

The difference between the first measure and the second
one gives us the overhead of our architecture in terms of
extra time taken at process startup.

Checkpoint and Restore: Process migration is done in
two separate and independent steps – checkpoint and
restore. In addition, while the process executes, the virtual
environment is constantly monitoring object handles and
translating them using a Handle Table. The creation of an
object handle needs 6.6 microseconds, while the time
required for deletion and matching operations varies
according to the size of the Handle Table.

When a migration event happens, the checkpoint time
depends on the number of threads, heaps, objects. For
Process A, the checkpoint time was 88.6 milliseconds,
and the checkpoint information size was 1.15MB. On the
destination machine, the restoration for Process A took
68.6 milliseconds.

For Process B the checkpoint took 1088 milliseconds and
the restore took 372 milliseconds and the checkpoint
information took 1.76MB. The very high numbers on this
process is due to a later discovered inefficiency in the
manner heap data is being recorded, and we are working
on an optimization.

6. RELATED WORK

MPVM (Migratable PVM): MPVM [22] is an extension
of PVM that allows parts of a parallel computation to be
suspended and resumed later on other workstations.
Transparency is ensured by modifying the PVM libraries
and daemons and by providing wrapper functions to
certain system calls so that migration occurs without
modifying the application code.

Condor: This [17] is a distributed batch processing
system for UNIX that can transparently checkpoint the
process state to a file and restart the process on a different
machine. Programs are re-linked to include the checkpoint
libraries. It is implemented at the user level.

Libckpt: This [28] is a portable transparent
checkpointing library on UNIX. It checkpoints the
process state using transparent incremental and copy-on-
write checkpointing. To use libckpt, the developer has to

change a line of his source code and recompile with the
libckpt library. It runs at the user level.

Sprite: This [26] provides transparent process migration
to allow load sharing by using idle workstations. It is
implemented at the kernel level while providing a UNIX
like system call interface. In Sprite, each process appears
to run on a single host known as host node throughout its
lifetime, but it may execute physically on a different
machine. The kernel distinguishes between location–
dependent and location-independent calls. The kernel
forwards location-dependent system calls of a foreign
process to its home node.

A Transparent Checkpoint Facility On NT: This [29]
implements a checkpoint facility on NT, a general-
purpose library that can be linked and used with any
application transparently. This system is able to
checkpoint the processes by redirecting the Win32 API
calls and saving the data segments, thread execution
context and stack segments.

NT-Swift (Software Implemented Fault Tolerance On
Windows NT): NT-SwiFT [30] is a set of components
that facilitates building fault tolerant and highly available
applications on Windows NT. It checkpoints data
segment, communication channels, contexts of threads,
stacks etc.

 7. CONCLUSION

We present results in providing general-purpose processes
with a migration facility. Migrating processes has many
advantages, including the ability to make them mobile
and the ability to make them tolerant to failures. While
previous work has focused on scheduling and
checkpointing special processes, we do the same for
general processes. In addition this facility does not need
any libraries to be linked, access to source code, or
modifications to the program

8. ACKNOWLEDGEMENT

This research is partially supported by grants from
DARPA/Rome Labs (F30602-99-1-0517), NSF (CCR-
9988204)-Intel and Microsoft, and is part of the
“Computing Communities” project, a joint effort between
Arizona State University and New York University.

REFERENCES:

[1] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R.
Mancheck and V. Sunderam, PVM: Parallel Virtual
Machine, The MIT Press, 1994.

[2] W. Gropp, E. Lusk & A. Skjellum, Using MPI
Portable Parallel Programming with the Message Passing
Interface, MIT Press, 1994, ISBN 0-262- 57104-8.
[3] P. Dasgupta, Z. M. Kedem & M. O. Rabin, Parallel
Processing on Networks of Workstations: A Fault-
Tolerant, High Performance Approach, Proc. of the 15th
IEEE International Conf. on Distributed Computing
Systems, 1995.
[4] N. Carriero & D.Gelernter, Linda in Context, Comm.
of ACM, 32, 1989.
[5] C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu,
R. Rajamony, W. Yu, & W. Zwaenepoel, TreadMarks:
Shared Memory Computing on Networks of
Workstations, IEEE Computer, December 1995.
[6] E. Speight & J. K. Bennett, Brazos: A Third
Generation DSM System, The USENIX Windows NT
Workshop, 1997.
[7] A. Tanenbaum, R. van Renesse, H. van Staveren, G.
Sharp, S. Mullender, J. Jansen & G. van Rossum,
Experiences with the Amoeba Distributed Operating
System, Communications of the ACM, 33(12), 1990.
[8] R. Rashid, D. Julin, D. Orr, R. Sanzi, R. Baron, A.
Forin, D. Golub, M.B. Jones, Mach: A System Software
Kernel, Proc. of the 1989 IEEE International Conf.
COMPCON.
[9] P. Dasgupta, LeBlanc Jr., R. J., M. Ahamad, &
Ramachandran, The Clouds Distributed Operating
System, IEEE Computer, Nov. 1991.
[10] M. Rozier, V. Abrossimov, F. Arm & M. Gien, M.
Guillemont, F. Hermann & C. Kaiser, Chorus (Overview
of the Chorus Distributed Operating System), Proc. of the
USENIX Workshop on Micro-Kernels and Other Kernel
Architectures, 1992.
[11] T.Boyd & P.Dasgupta, Injecting Distributed
Capabilities into Legacy Applications Through Cloning
and Virtualization, International Conf. on Parallel and
Distributed Processing Techniques and Applications
(PDPTA’00), July 2000.
[12] R. Nasika & P. Dasgupta, Transparent Migration of
Distributed Communicating Processes. 13th ISCA
International Conf. on Parallel and Distributed
Computing Systems (PDCS-2000), August 2000.
[13] P. Dasgupta, V. Karamcheti and Z. Kedem,
Transparent Distribution Middleware for General Purpose
Computations, International Conf. on Parallel and
Distributed Processing Techniques and Applications
(PDPTA’99), June 1999.
[14] S. Sardesai & P. Dasgupta, Chime: A Windows NT
based parallel processing system, USENIX Windows NT
Symposium, Seattle, August 1998. (Extended Abstract).
[15] J. Richter, Applications for Windows (Microsoft
Press, 1997).
[16] D. McLaughlin, S. Sardesai, & P. Dasgupta,
Preemptive Scheduling for Distributed Systems, 11th
International Conf. on Parallel and Distributed
Computing Systems, 1998.
[17] M. Litzkow, M. Livny & M. Mutka, Condor—A
Hunter of Idle Workstations, 8th International Conf. on
Distributed Computing Systems, 1988.

[18] E. Jul, H. Levy, N. Hutchinson, & A. Black, Fine-
grained Mobility in the Emerald System, ACM
Transactions on Computer Systems, 6(1), 1988.
[19] A. Baratloo, M. Karaul, Z. Kedem, & P. Wyckoff,
Charlotte: Metacomputing P. Wyckoff. Charlotte:
Metacomputing on the Web, FutureGeneration Computer
Systems, 1999.
[20] S. Sardesai, D. McLaughlin & P. Dasgupta,
Distributed Cactus Stacks: Runtime Stack-Sharing
Support for Distributed Parallel Programs, International
Conf. on Parallel and Distributed Processing Techniques
and Applications (PDPTA’98), July 1998.
[21] V. S. Sunderam, PVM: A Framework for Parallel
Distributed Computing, Concurrency—Practice and
Experience, 2(4), December 1990.
[22] J. Casas, D. L. Clark, R. Konoru, S. W. Otto, R. M.
Prouty & J. Walpole, MPVM: A Migration Transparent
Version of PVM, Computing Systems: The Journal of the
USENIX Association, 8(2), Spring 1995.
[23] L. Dikken, F. van der Linden, J. J. J. Vesseur, & P.
M. A. Sloot, DynamicPVM: Dynamic Load Balancing on
Parallel Systems, In W. Gentzsch & U. Harms, editors,
High Performance Computing and Networking, Springer
Verlag, LNCS 797, April 1994, 273-277.
[24] A. Barak, S. Guday & R. G. Wheeler, The MOSIX
Distributed Operating System, Lecture Notes in Computer
Science, Vol. 672, Springer, 1993.
[25] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M.
Fiuczynski, D. Becker, S. Eggers & C. Chambers,
Extensibility, Safety and Performance in the SPIN
Operating System, 15th Symp. On Operating Systems
Principles, December 1995.
[26] F. Douglas & J. Outerhout, Process Migration in the
Sprite Operating System, Proc. of the 7th International
Conf. on Distributed Computing Systems, September
1987, 18-25.
[27] M. Pietrek, Peering Inside the PE: A tour of the
Win32 Portable Executable File Format. Microsoft MSDN
Library, March 1994.
[28] J. S. Plank, M. Beck & G. Kingsley, Libckpt:
Transparent Checkpointing under UNIX, Proc. USENIX
Winter 1995, New Orleans, Lousiana, January 1995.
[29] J. Srouji, P. Schuster, M. Bach & Y. Kuzmin, A
Transparent Checkpoint Facility On NT, Proc. of 2nd

USENIX Windows NT Symposium, August 3-4 1998.
[30] Y. Huang, P. E. Chung, C. Kintala, D. Liang & C.
Wang, NT-SwiFT: Software Implemented Fault
Tolerance for Windows NT, 2 nd USENIX Windows NT
Symposium, July 1998.

	Synchronization objects: For the purpose of synchronization, threads sometimes create kernel objects like, events, timers, semaphores and mutexes. The states of these kernel objects will cause the thread to transition its own state. Therefore keeping tra
	Migrating a server process: The same method is followed when the server is migrated from one machine to another except that when the server is migrated to the new machine, it sends the IP address of the new machine to the client’s socket thread. This all
	5. PERFORMANCE
	
	
	
	Loading the PM-DLL: The number of API calls that need to be intercepted by wrapper functions varies in each application. The size of the PM-DLL is directly proportional to this number. The PM-DLL for Process A had wrappers for 24 API calls, while the PM-
	Condor: This [17] is a distributed batch processing system for UNIX that can transparently checkpoint the process state to a file and restart the process on a different machine. Programs are re-linked to include the checkpoint libraries. It is implemente
	Libckpt: This [28] is a portable transparent checkpointing library on UNIX. It checkpoints the process state using transparent incremental and copy-on-write checkpointing. To use libckpt, the developer has to change a line of his source code and recompil
	Sprite: This [26] provides transparent process migration to allow load sharing by using idle workstations. It is implemented at the kernel level while providing a UNIX like system call interface. In Sprite, each process appears to run on a single host kn
	A Transparent Checkpoint Facility On NT: This [29] implements a checkpoint facility on NT, a general-purpose library that can be linked and used with any application transparently. This system is able to checkpoint the processes by redirecting the Win32

