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ABSTRACT 
 
The Computing Communities project uses an innovative 
approach to integrate the ubiquitous desktop with an 
underlying distributed system. The approach involves 
unobtrusive modification of functionality of existing 
systems by decoupling the application process from the 
operating system. Using this, we are building an 
integrated distributed computing platform. Process 
migration is an underlying mechanism that is key to 
enabling the Computing Communities framework.  
 
We migrate regular, general-purpose computations, 
running shrink-wrapped binaries. By augmenting the 
decoupling of applications with techniques that 
checkpoint and restore the state of a process, we are able 
to migrate a process within our distributed environment. 
In this paper we outline our experiences in migrating 
Win32 process running over Windows 2000. 
 
 
KEY WORDS:  Parallel/distributed computing 
systems, API Interception, Process Migration. 
 
 
1. INTRODUCTION 
 
Over the past two decades, research in the distributed 
systems arena, has yielded a set of parallel processing 
platforms, (such as PVM [1], MPI [2], Calypso [3], Linda 
[4], Treadmarks [5], Brazos [6] and so on) and many 
distributed Operating Systems (such as Amoeba [7], 
Mach [8], Clouds [9], Chorus [10], and so on). However, 
this research failed to bring the power of distributed 
general-purpose computation to the desktop. We believe 
that this can be attributed to three major reasons. 
 
First, enhancements to existing system capabilities can 
potentially invoke system-wide modifications that can 
become expensive [11]. This increases cost of 
development and has therefore not been popular amongst 
researchers. Second, the void of applications for a new 
platform, also called the application development barrier 
[12] makes such platforms unattractive. Finally, legacy 
applications need to be rewritten in order to use the 
features of the new platform [11]. Again this leads to the 
increase in the cost of development and deployment. 

 
We feel that the solution to this problem calls for 
extending current desktop operating system technology to 
provide the attributes of a distributed system. Further, 
existing shrink-wrapped applications must be enabled to 
execute over this distributed environment and benefit 
from the platform’s ability to perform distributed 
scheduling, process migration, failure masking, load 
balancing and so on. The system that we are attempting to 
build is an integrated distributed computing platform that 
we call as a “Computing Community” (see section 1.1). 
Our efforts demonstrate the power of unobtrusive 
modification of functionality of existing systems without 
any change to the binaries of the base operating system or 
its application base.  
 
In this paper, we describe how such unobtrusive 
modification of functionality can be achieved by using 
virtualization [13, 14] and well-known API Interception 
technology [15] to decouple the application process from 
the operating system. We further illustrate how it can be 
used to allow processes to be migrated within a 
computing community. The processes in our system 
would attain attributes such as mobility, collaborative 
work, distributed systems management, automatic 
reconfiguration, and fault tolerance [16]. Finally, we 
outline recent experiences with migrating Win32 
processes running over Windows 2000, and identify 
several research issues that require further exploration. 
 
 
1.1 COMPUTING COMMUNITIES 
 
Our research is part of a larger project called “Computing 
Communities” (or CC) [13]. The goal of the CC project is 
to enable a group of computers to act like a large 
community of systems, which grows or shrinks based on 
dynamic resource requirements through the scheduling 
and migration of processes, applications and resource 
allocations between systems—all transparently. 
 
The computers participating in the CC utilize a standard 
operating system and run shrink-wrapped applications. 
The novelty of the CC approach is that it requires no 
application redesign, re-coding or recompiling. Binary 
compatibility is assured while adding new services and 



 

 

features such as transparent distribution, global 
scheduling, fault tolerance, and application adaptation. 
 
The key technique to achieve such a system is the creation 
of a “virtualizing Operating System” or vOS. The main 
theme in the vOS is, of course “virtualization”. 
 
 
1.2 VIRTUALIZATION 
 
Virtualization is the decoupling of the application process 
from its physical environment [12, 11]. That is, a process 
runs in a virtual environment with connections to a virtual 
screen and virtual keyboard. The application uses virtual 
files, virtual network connections, and other virtual 
resources. For every virtual resource that the process 
needs there exists a mapping, provided by the virtual 
environment, to a physical resource of the operating 
system. When the application attempts to access a virtual 
resource through a system call, the virtual environment 
intercepts that call and changes the parameters of the 
system call to access the actual physical resource. This 
enables the application to use remote resources as though 
they were local and change the mapping between the 
virtual resource and physical resource dynamically. 
 
 
1.3 API INTERCEPTION 
 
The mechanism used by the virtual environment to 
intercept system calls is known as API Interception [13]. 
In the Windows 2000 Dynamic Linked Library (DLL) 
scheme, when the application is loaded, the API 
references are resolved to a table of addresses in the user 
space called the Import Address Table (IAT), and filled in 
at run time. By modifying the addresses contained in the 
IAT, the application call is redirected to an alternate API 
entry point. Inserting code at that entry point introduces 
new functionality that creates the opportunity to track the 
request and use of resources by the process. This method 
is further described in [15] 
  
The virtual environment begins to intercept system API 
calls at the very beginning of the process to guarantee that 
all the resources used by the process are virtual resources 
and that the process is completely decoupled from the 
physical environment. Therefore, at the point of creation 
of the process, the API Interception DLL is injected into 
the process space. Thus, we achieve unobtrusive 
modification of functionality of the existing system. 
 
In this paper we describe the mechanism by which 
virtualization and API Interception can allow processes to 
migrate within a Computing Community. We further 
illustrate the techniques that are necessary to checkpoint 
and restore the process state in order that the process can 
start on the new machine in the same state as it was before 
migration. 

2. MOTIVATION 
 
Traditionally, process migration mechanisms have been 
used to load balance processors in a distributed system 
and approaches for supporting them transparent to the 
application have required extensive kernel support. We 
have described the two techniques that were most 
commonly used to provide process migration capability.  
 
• Many programming systems and batch environments 

that rely on a checkpoint/restart strategy for 
spreading computations across a network of 
machines link the process to a user-level migration 
library, which handles process state maintenance and 
migration facilities. However, this method restricts 
the process from being involved in GUI interactions, 
open network connections, or accessing file systems. 
Example systems include Condor [17], Emerald [18], 
Charlotte [19], and Chime [14, 20] programming 
systems, as well as migration-capable extensions of 
PVM [21] such as MPVM [22] and DynamicPVM 
[23]. 

 
• Most distributed operating systems with support for 

process migration such as Chorus [10], MOSIX [24], 
Amoeba [7], SPIN [25], and Sprite [26] relocate the 
inner core of the process along with related kernel 
state using system mechanisms. They optionally 
leave behind a proxy on the source site to handle any 
“residual dependencies” (e.g. active network 
connections). Such a strategy can migrate any general 
process, but incurs significant run-time overheads in 
addition to operating system complexity and 
maintainability costs.  

 
Despite the large number of process migration prototypes 
described in literature, relatively few applications have 
been shown to benefit from these mechanisms. Several of 
the distributed systems referred to above have used 
process migration for load-balancing jobs in a network, 
and parallelizing coarse-grained applications certain 
scientific computations, with results in literature reporting 
good throughput improvements. 
 
Unfortunately, these applications are no longer viewed as 
compelling, particularly given the ready availability of 
small- to moderate-sized SMPs. Nonetheless, we 
attempted to employ process migration to provide 
processes in a Computing Community with attributes such 
as collaborative work, distributed systems management, 
automatic reconfiguration, and fault tolerance [16]. In 
addition, we feel that general-purpose process migration 
affords significant far-reaching benefits, making it useful 
for much more than just load balancing: 
 
• Consider a user actively using a complex application 

(such as a spreadsheet with lots of macros) that now 
wants to be able to work on another computer at 
another location without closing the application, 
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Figure 1:  Process creation and DLL injection by Loader process. 

needing therefore to migrate the application. In 
another scenario, the user leaves the application 
running at work and then goes home and realizes she 
needs to do additional work. Process migration 
support would enable her to simply move the 
application over to the home machine. Further, the 
seamless “migratability” of applications between 
desktops and laptops can add another dimension to 
mobile computing. 

 
• If we can migrate the application and its screen and 

its active connections to networks and files, then 
using the same mechanism, we should be able to 
move the screen without moving the application 
process. Decoupling the various external interfaces of 
a process (GUI, network connections, files, etc.) from 
the internal state of the process facilitates many 
interesting collaborative work situations. Taking this 
one step further, decoupling the internal process state 
from its interactions with operating system 
components such as dynamically linked libraries 
(DLLs) permits on-the-fly replacement of DLLs. 

 
• The essence of process migration is the ability to 

capture all of the state that describes process 
behavior. Given such capabilities, application 
functionality can be extended using novel 
abstractions such as “active versioning”. For 
example, while a user is working on developing 
complex macros for a spreadsheet, he might decide to 
do some risky experimentation without necessarily 
saving the current state (not just the files but the 
entire environment). It is only later that the user 
decides whether to commit these changes or revert 
back to an earlier state. 

 
• Consider a server running a set of objects being 

actively used by a lot of external clients over the 
Internet. The system administrator needs to shut this 
machine off for maintenance but does not want to 
disrupt the service. The server along with its state and 
even active network connections can be migrated to 
another machine. 

 
This focus on the novel capabilities provided by process 
migration mechanisms motivates a different approach. 
We aimed to be able to cleanly migrate any application 
process (without leaving any trace behind), irrespective of 
the behavior of the process. We do not want access to 
source code of the application, to modify the application 
or to re-link the application. While achieving this might 
seem very difficult, we next describe our approach that 
meets these requirements. 
 
 
3. ARCHITECTURE 
 
The process migration facility relies on a set of 
mechanisms to provide its services. It consists of a DLL 

that we call the PM-DLL (or Process Migration DLL). 
For all processes that are to be migratable, we inject the 
PM-DLL into the process and create a control thread in 
the process. This thread then reroutes all API accesses 
made by other threads in the process, by changing the 
entries in the DLL import address table. Hence, all 
relevant Win32 calls are now routed thought stubs in the 
PM-DLL. 
 
The virtual environment is setup by the loader process 
(figure 1). The loader has two main responsibilities: to 
create a new process in a suspended state and to inject 
into it the DLL that will perform the API Interception. In 
the case that the application is being restarted on a new 
machine, the loader process would need to detect this, as 
it is partly responsible for restoring the process’s state. 
 
This responsibility is also shared by the PM-DLL’s 
control thread. Additionally, the PM-DLL contains logic 
to checkpoint the process state just before migration. The 
PM-DLL is thus multi-threaded in order that it can 
perform all its duties simultaneously. 
 
The loader also serves one more purpose; to notify the 
PM-DLL to begin check-pointing the application process 
state when the user requests that the application be 
migrated to a new location. 

 

 
 
 
 
 
 
 
 
 
 
 

 
4. IMPLEMENTING THE MIGRATION 
 
A user on a computer participating in a CC can request 
that a local process of an application created by the loader 
be migrated to a machine of her choice. In order to make 
this happen, the loader and the PM-DLL save relevant 
state information pertaining to the process into binary 
files on some globally accessible storage. Thereafter the 
process ceases to exist on that machine. On the target 
machine, chosen by the user to run the migrated process, 
the loader is utilized to create a new process of the same 
application. While doing so, the loader becomes aware 
that the newly created suspended process is the result of a 



 

 

Figure 3: A process (P) in virtual execution environment in the CC 
and Translation of virtual handles to actual physical handles 

migration and that there exists state information on files 
somewhere that must be used to bring this process to its 
last running state. As a result, the loader begins restoring 
the state information from the files. The PM-DLL 
completes this restoration and now the new process 
appears to the user in the same form as the earlier process, 
giving the perception of migration. 
 
Following are the components of the process that together 
form its state. 
 

Memory and Resources 

Threads 

Network connections  

Graphical User Interface (GUI) 

 
 
 
We describe the method to save and restore each of these 
components. Collectively, this logic would enable the 
virtualized process to be migrated within a CC.  
 
 
4.1 MEMORY AND RESOURCES 
 
A running process affects the contents of its heaps and 
data section. In order to provide the process created on the 
new machine the same state as the recently migrated 
process, these heaps and data sections have to be 
recreated with the exact same data as in the earlier 
process. In a similar way, resources, like files, would have 
to be made available for the new process to use. 
 
Data Section: The data section of a process consists of 
many regions. All except the .data region contain global 
data and constants and are therefore of no significance to 
process migration. These regions are automatically 
created from the executable when the process is started. 
 
At the point of migration for a process, the control thread 
that exists as part of the injected DLL code identifies the 
.data region and saves its contents into a binary file on 
some globally accessible storage. To discover the location 
and size of this region, the control thread uses relevant 
headers from the Portable Executable File Format [27]. 
 
As part of state information that is written onto the newly 
created suspended process on the target machine, the 
injected control thread retrieves the binary information 
contained in the designated file and writes its contents 
into the memory region identified for .data. 
 
Heaps: Information about the heaps is obtained from the 
process environment block (PEB). The PEB contains 
information about the number of heaps in the process and 
their addresses. Further, each VirtualAlloc() call is 
intercepted and information about the allocated memory 

is stored in data structures maintained by the injected 
DLL. 
At the point of migration, the heap addresses and their 
allocated regions of memory can be saved into globally 
accessible binary files. Later, restoration will cause them 
to be created at exactly at the same locations in the 
process’s virtual address space on the target machine.  
 
Resources: The vOS implements the functionality to 
virtualize the resources by controlling the mapping 
between the physical resources (seen by the operating 
system) and virtual handles (seen by the application). In 
general, virtual handles represent the software resources 
like file handles, graphics handles and network handles 
(Figure 3). The application uses the virtual handles as if 
they are OS generated. When the application passes a 
virtual handle to a system call, the vOS intercepts that call 
and passes the actual physical handle to the system call. 
Therefore even if we do not get the same object handle 
after migration, this handle translation performed by the 
vOS enables the process to continue as though there was 
no change to the resources it holds. Handle translation is 
implemented in the form of a Handle Translation Table 
that is maintained by the injected DLL code. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2 THREADS 
 
A thread is the basic unit scheduled by the operating 
system. Every process starts from a single primary thread 
and can create additional threads from any of its threads. 
From a process migration view, all the currently existing 
threads have to be restored with the same state on the 
destination machine.  
 
To discover the threads of a process, we intercept the 
CreateThread() function and save the parameters that 
were used in the call into a data structure called the 
Thread Table. A thread can be in any one of the following 
states at the point of migration: running, suspended, wait 
and terminated. Depending on the state of the thread at 
the point of migration, the PM-DLL’s control thread 
treats it differently. 
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Figure 2: Components of a Process’ State 



 

 

4.2.1 THREAD CONTEXT AND STACK 
 
At the point of migration, all process threads, irrespective 
of state, are suspended. The context of each thread is then 
obtained using the GetThreadContext() system call and 
saved into a binary file on globally accessible storage. At 
the destination machine, the loader creates all threads in a 
suspended state exactly how they were on the source 
machine. After the restoration of the stack and heaps, 
each context file is read to retrieve the context 
information into a data structure. This is then given to the 
SetThreadContext() API to restore the context for each 
thread. 
 
Saving and restoring the stack involves a little more than 
a system call. When a thread is created, the system 
reserves a region in the address space for the stack and 
makes the second page of that region, the guard page, by 
using the PAGE_GUARD flag. This page acts as a 
boundary for the stack and allows the stack storage to 
increase only when the thread requires it. The flag serves 
as a good indicator of the stack.  By using the 
VirtualQuery() function, we query the whole usable 
memory area and locate a region whose protection 
attributes indicate the existence of a guard page. Thus we 
have located the stack. The query function also gives us 
the base address, and size of the pages we query. This 
information can be stored in a binary file on globally 
accessible storage, along with the stack data. 
 
Soon after it creates the new process in a suspended state, 
the loader will restore the stack and heap information 
using the WriteProcessMemory() system call. After this, it 
employs the CreateRemoteThread() system call and the 
information from the Thread Table to recreate all threads 
in suspended state. 
 
 
4.2.2 THREAD STATES 
 
Threads in Running State: For threads in the running 
state, restoration is very simple. At the destination 
machine, the loader creates all threads in a suspended 
state with the parameters that were recorded in the Thread 
Table. Each thread’s context is set using the 
SetThreadContext() system call. Consequently, the 
operating system’s scheduler determines the next thread 
to schedule. 
 
Threads in Suspended State: In the case of threads that 
are to be recreated in a suspended state, the control thread 
at the destination would need to pass up resuming the 
thread after its context has been set. We set a field in the 
Thread Table to indicate whether the control thread 
should let this thread remain in a suspended state or 
resume it for operating system scheduling. Our discovery 
of the suspended state of a thread is due to the 
interception of the SuspendThread() and ResumeThread() 
system calls by the PM-DLL. 

Threads in Wait State: The migration of a thread that is 
in the wait state is not as trivial. Apart from recognizing 
and remembering the state of the thread, we also need to 
record the objects that the thread is waiting for. The 
recreation of this at the destination machine is 
complicated by the following two factors: 
 
1. Thread state is maintained inside the kernel and is 

inaccessible due to the lack of a programmer’s 
interface. So we cannot create a thread in a wait state. 

 
2. The loader process recreates threads, and all the 

objects are recreated by the injected PM-DLL’s 
control thread. Both the loader and the PM-DLL exist 
in separate process address spaces. Therefore neither 
of them can make any created thread wait on 
particular objects. 

 
A thread might be in a wait state because it has called a 
wait function like WaitForSingleObject(). Here we use 
the example of a thread that has called the 
WaitForSingleObject() function to explain how we 
implement the migration of threads in this state. On 
calling this function, the thread will enter into a wait state 
if the object is not signaled. The instruction pointer points 
to the line following the function call so that when this 
function returns, the calling thread runs from the code 
pointed to by the instruction pointer. If the user requests 
migration when the calling thread is waiting and before 
the object has been signaled, we cause the function to 
return with a hard-coded return value. This is possible 
because the PM-DLL has intercepted this function call 
and redirected the call to a wrapper function. It is the 
wrapper function that in reality returns with the hard-
coded return value. This value is stored in a variable and 
is not the same as any valid return value that the function 
could have had. At the destination machine, during 
restoration, the PM-DLL’s control thread executes a 
conditional statement that checks the value of this 
variable and determines if the wait function was forced to 
return due to a migration request. The PM-DLL knows to 
perform this check because the wait functions have been 
intercepted and logged when they were called at the 
source machine. In the case that the variable holding the 
return value of the function has the specific hard-coded 
value, we cause the wait function to be executed again. 
Therefore, the thread continues to wait on the same 
objects. 
 
Threads in Terminated State: Threads can reach the 
terminated state in one of the following three ways: by 
calling ExitThread() or TerminateThread(), or, by a 
return statement at the end of the thread function. The 
PM-DLL intercepts the ExitThread() and 
TerminateThread() call and deletes the thread handle 
from the Thread Table if the call is made. Thereafter the 
thread record is not available and the thread is not 
recreated. 
 



 

 

Records of threads that terminate due to a return 
statement are not removed from the Thread Table until 
the user requests migration. At this point, the control 
thread tries to suspend all threads in order to save relevant 
information for recreation. If the SuspendThread() call 
fails, the control thread assumes that the thread had 
reached a terminated state. The record of the thread 
handle is then removed from the Thread Table. 
 
Synchronization objects: For the purpose of 
synchronization, threads sometimes create kernel objects 
like, events, timers, semaphores and mutexes. The states 
of these kernel objects will cause the thread to transition 
its own state. Therefore keeping track of the state of these 
kernel objects would help us recreate all threads in their 
original state after the migration. 
 
Intercepting the system calls that create these kernel 
objects or change their state gives the PM-DLL 
information that can be used during restoration. 
 
 
4.3 NETWORK CONNECTIONS  
 
This paper deals only with migrating processes created by 
a loader within a CC that may have active network 
connections with another process also created by a loader 
within the same CC. 
 
At process creation, the injected DLL intercepts all the 
important socket APIs and wraps them with wrapper 
APIs. Further, it creates a socket thread for the purpose of 
closing and restoring network connections when the 
process migrates to a new machine. 
 
Migrating a client process: Migrating a client process is 
a bit different from migrating a server process. When a 
client has to migrate, the control thread saves information 
about all the sockets into a binary file on some globally 
accessible storage. The control thread then sends the port 
number of the client socket and a request to close the 
connection to the socket thread on the server. When it 
receives an acknowledgement from the socket thread on 
the server, it closes the connection and reports this to the 
server.  Now, the socket thread on the server also closes 
its connection and waits for a message from the migrated 
client process. 
 
After the client process is restarted on a new machine, the 
control thread restores the process state and reads the 
socket information from the binary file. It also retrieves 
the server IP address and port number from the file. The 
control thread then sends a message to the socket thread 
on the server that it is ready to reopen the connections. As 
a result the server’s socket thread creates a socket that 
binds to the same port as it was before and waits for the 
connection. The client’s control thread then makes a 
connection to the server and saves the new socket handle. 

However, due to virtualization, the application still sees 
the same virtual socket handle. 
 
Migrating a server process: The same method is 
followed when the server is migrated from one machine 
to another except that when the server is migrated to the 
new machine, it sends the IP address of the new machine 
to the client’s socket thread. This allows the client to 
know the server’s new location and re-establish all the 
connections. 
 
 
4.4 GRAPHICAL USER INTERFACE 
 
The window object is inserted into the Handle Table of 
the injected DLL by intercepting the CreateWindow() and 
CreateWindowEx() calls. In addition, the injected DLL 
maintains a history of messages that were sent to the 
window object by intercepting SendMessage() and 
DispatchMessage().  
 
During restoration, the control thread is charged with re-
creating all the objects that are present within the Handle 
Table.  The window object is thus created to look exactly 
like the original process window. The window’s message 
pump checks the history of messages and sends them 
again to the new window. 
 
 
5. PERFORMANCE  
 
The performance tests were run on Intel Pentium 
machines with 1 GHz CPU frequency and 512 MB RAM. 
In our tests we measured the following parameters: 
 
1. Time required for loading the process without any 

virtual environment or PM-DLL. 
2. Time required for loading the PM-DLL and creating 

the virtual environment. 
3. Time required to checkpoint and restore state 

information. 
4. Space requirements in order to store the state 

information between the checkpoint and restore 
phase. 

 
We used 2 processes for the measurements. Process A ran 
a dummy Win32 program consisting of 2 threads, 10 
heaps, 15 objects and invoked some file I/O API’s. 
Process B ran the unmodified Wordpad executable 
available with the Windows operating system. 
 
 
Process Creation: The first measurement is the time 
taken by Windows 2000 to create the processes. Process 
A takes 1.49 milliseconds to be created and Process B 
takes 1.53 milliseconds (the difference in negligible). 
 
Loading the PM-DLL: The number of API calls that 
need to be intercepted by wrapper functions varies in each 



 

 

application. The size of the PM-DLL is directly 
proportional to this number. The PM-DLL for Process A 
had wrappers for 24 API calls, while the PM-DLL for 
Process B had wrappers for 340 API calls. 
 
The time taken to install the wrappers for these processes 
(after the process has been started) was 33 milliseconds 
for Process A and 259 milliseconds for Process B. The 
difference shows the extra work (and overhead) of 
wrapping a larger number of API calls. 
 
The difference between the first measure and the second 
one gives us the overhead of our architecture in terms of 
extra time taken at process startup. 
 
Checkpoint and Restore: Process migration is done in 
two separate and independent steps – checkpoint and 
restore. In addition, while the process executes, the virtual 
environment is constantly monitoring object handles and 
translating them using a Handle Table. The creation of an 
object handle needs 6.6 microseconds, while the time 
required for deletion and matching operations varies 
according to the size of the Handle Table. 
 
When a migration event happens, the checkpoint time 
depends on the number of threads, heaps, objects. For 
Process A, the checkpoint time was 88.6 milliseconds, 
and the checkpoint information size was 1.15MB. On the 
destination machine, the restoration for Process A took 
68.6 milliseconds. 
 
For Process B the checkpoint took 1088 milliseconds and 
the restore took 372 milliseconds and the checkpoint 
information took 1.76MB. The very high numbers on this 
process is due to a later discovered inefficiency in the 
manner heap data is being recorded, and we are working 
on an optimization. 
 
 
6. RELATED WORK 
 
MPVM (Migratable PVM): MPVM [22] is an extension 
of PVM that allows parts of a parallel computation to be 
suspended and resumed later on other workstations. 
Transparency is ensured by modifying the PVM libraries 
and daemons and by providing wrapper functions to 
certain system calls so that migration occurs without 
modifying the application code.  
 
Condor: This [17] is a distributed batch processing 
system for UNIX that can transparently checkpoint the 
process state to a file and restart the process on a different 
machine. Programs are re-linked to include the checkpoint 
libraries. It is implemented at the user level. 
 
Libckpt: This [28] is a portable transparent 
checkpointing library on UNIX. It checkpoints the 
process state using transparent incremental and copy-on-
write checkpointing. To use libckpt, the developer has to 

change a line of his source code and recompile with the 
libckpt library. It runs at the user level. 
 
Sprite: This [26] provides transparent process migration 
to allow load sharing by using idle workstations. It is 
implemented at the kernel level while providing a UNIX 
like system call interface. In Sprite, each process appears 
to run on a single host known as host node throughout its 
lifetime, but it may execute physically on a different 
machine. The kernel distinguishes between location–
dependent and location-independent calls. The kernel 
forwards location-dependent system calls of a foreign 
process to its home node. 
 
A Transparent Checkpoint Facility On NT: This [29] 
implements a checkpoint facility on NT, a general-
purpose library that can be linked and used with any 
application transparently. This system is able to 
checkpoint the processes by redirecting the Win32 API 
calls and saving the data segments, thread execution 
context and stack segments. 
 
NT-Swift (Software Implemented Fault Tolerance On 
Windows NT): NT-SwiFT [30] is a set of components 
that facilitates building fault tolerant and highly available 
applications on Windows NT. It checkpoints data 
segment, communication channels, contexts of threads, 
stacks etc. 
 
 
 7. CONCLUSION 
 
We present results in providing general-purpose processes 
with a migration facility. Migrating processes has many 
advantages, including the ability to make them mobile 
and the ability to make them tolerant to failures. While 
previous work has focused on scheduling and 
checkpointing special processes, we do the same for 
general processes. In addition this facility does not need 
any libraries to be linked, access to source code, or 
modifications to the program 
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