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Abstract 

Buffer Overflow Attacks that exploit memory overruns 
in a variety of ways have been the most effective and 
difficult to prevent, methods of compromising system 
security. The root cause for exploitation of these 
vulnerabilities is the lack of availability of allocated size 
information of buffers at runtime. Consequently no 
bound checking is done in standard C library functions 
that are the most common interfaces for buffer 
manipulation leaving most C programs vulnerable to 
buffer overflow attacks. Ensuring proper bound 
checking at these interfaces can help prevent buffer 
overflow attacks.  
 
Static approaches do to bounds checking does not 
work, as it is not possible to know the allocated size of 
dynamically allocated buffers at compile time. On the 
other hand, relying on pure dynamic approaches for 
collecting allocated size information incurs high 
runtime overhead.  A hybrid approach   that collects 
buffer bound information using static and dynamic 
methods and ensures enforcement of these boundaries 
at runtime can be very effective in preventing buffer 
overflows.  Such a hybrid approach lowers the 
overhead of obtaining bound information while 
improving the accuracy of the information obtained. 
Tests on the implemented hybrid defense method 
promise efficient prevention and complete coverage of 
various buffer overflow attacks.  

Keywords: Information Security, Software Security. 

1. sIntroduction 
Buffer Overflow vulnerabilities are being 

persistently exploited to successfully penetrate into 
system security. About 50% of the attacks reported by 
CERT [CERT02] are based on buffer overflow 
vulnerabilities. Notorious attacks based on buffer 
overflow vulnerabilities have been around for the past 
15 years, with the 1998 Morris’s Internet worm being 
the first well-known attack of its kind. They dominate 
the class of remote penetration attacks, where-in an 
attacker exploits a buffer overflow vulnerability by 
feeding a well crafted oversized input to the vulnerable 
program, thereby injecting and executing the code of his 
choice. 

A buffer is a contiguous block of computer memory that 
holds multiple instances of the same data type. In C 

language, the word buffer commonly refers to character 
arrays (static) and character pointers (dynamic). A 
Buffer Overflow occurs when a buffer is written beyond 
its maximum allocated length, thus causing the memory 
immediately following the end of the buffer to be 
overwritten. The overflow can inject foreign (attack) 
code into an unsuspecting process and then hijacks 
control of that process to execute the injected code. The 
hijacking of control is usually accomplished by 
overwriting code pointers (like return addresses on the 
process stack,   function pointers, parameters to relevant 
system calls or library calls ) in the process memory 
[Aleph96].   
 
Programs written in C language have always been 
plagued with Buffer Overflow vulnerabilities. This is 
because C language does not automatically check for 
array out-of-bounds condition and illegal pointer 
references. Second important reason being, most of the 
common library functions in C - string manipulation and 
input functions (scanf and printf and gets family of 
functions) are exploitable, i.e., they do not check for 
overflows while writing to buffers. Buffer Overflows 
under normal conditions cause the program to crash, 
however an attacker can exploit these vulnerabilities to 
accomplish malicious tasks.  Therefore it is left to the 
programmer to explicitly check for such attacks, which 
is difficult and sometimes impossible (for example, 
gets() may encounter a large string and assign past the 
input buffer limitations.) 

The methods of defense against Buffer Overflow attacks 
can be broadly classified as static and dynamic. Static 
methods of defense use source code analysis to detect 
potential buffer overflow vulnerabilities, which can 
possibly be exploited at runtime to launch an attack. 
Dynamic methods of defense prevent stack based buffer 
overflow attacks by checking if the known attack targets 
(like function return address or old base pointer on the 
stack) have been tampered with, before returning 
control to the target. 

Numerous methods of defense against Buffer Overflow 
attacks have been proposed but none of them can 
completely prevent or detect all kinds of buffer 
overflow attacks. This is because most of them 
concentrate on a particular kind of buffer overflow 
attacks (specifically stack based buffer overflows that 
rely on function return address corruption to launch an 
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attack) and they use approximate bounds to determine 
the possibility of a buffer overflow.  

A Program can be completely defended against Buffer 
Overflow attacks when it can be ensured that every 
buffer manipulation function respects the maximum 
allocated size bound of the buffer.  This leaves us with 
two problems: 

1. To obtain the maximum allocated information of a 
buffer  

2. To make this information available to all buffer 
manipulation functions and ensure that they respect 
the boundaries of the buffer.  

The solution presented in this paper addresses the above 
problems  using a hybrid approach. It uses static analysis 
to obtain the allocated size of each buffer in the program 
and the dynamic counterpart (that consists of a library 
of safe wrappers to unsafe buffer manipulation 
functions) makes use of this information and ensures 
that every buffer manipulation function respects the 
maximum allocated size bound of a buffer.  

2. Motivation 
In spite of the numerous methods of defense against 
buffer overflow attacks, about 50% of the remote 
attacks are based on buffer overflow vulnerabilities. 
This implies that the defense methods are not complete 
and that they can handle only a known subset of buffer 
overflow attacks. Buffer Overflows can be completely 
prevented if it can be ensured at runtime that no buffer 
is written beyond its maximum allocated size. Ensuring 
this , using pure static approach is not possible because 
of two reasons – firstly the static analyzer does not have 
allocated size information of all buffers and also the 
static analyzer relies on the programmer to prevent 
buffer overflows at runtime.  

Most of the dynamic approaches proposed so far rely on 
post overflow related conditions to detect and prevent 
buffer overflow attacks. Such a protection mechanism 
relies on known attack techniques and targets and hence 
can be subverted by new unknown attacks. The crux of 
the problem is to prevent overflow from occurring itself 
rather than trying to stop the attack upon detecting an 
overflow.  The hybrid approach proposed in this paper 
prevents buffer overflows by not allowing any buffer to 
be written beyond its maximum allocated size. 

3. Related Work 

3.1 StackGuard 
The StackGuard compiler [Cowan98] is the most well 
known dynamic method of defense against buffer 
overflow attacks. It is designed to detect and stop stack 
based buffer overflow attacks targeting the return 
address on the stack. It does so by placing a dummy 
value (canary value) between the return address and the 

stack data just before transferring control to a function. 
Upon return from the function it checks if the inserted 
canary value is intact to determine if the return address 
has been tampered with, if so it aborts the process 
execution. StackGuard protection can be subverted if 
the attacker can guess the dummy value, or by abusing a 
pointer to the return address [Bulba00]. It does not 
address other types of overflows on stack and 
elsewhere.   

3.2 StackShield 
This is a compiler patch for GCC [Wagner00], which is 
also based on the idea of protecting the return address 
on the stack. It implements three types of protection; 
two of them defend against overwriting of the return 
address and one against overwriting of function 
pointers. It basically implements all of them using 
auxiliary stacks or global variables to maintain copies of 
the original contents i.e. contents before function calls 
and then compares the respective contents before 
returning control, to determine if the return address or 
function pointers have been tampered with. It ensures 
additional protection from function pointer based 
attacks by detecting illegal manipulation of function 
pointers at runtime, by bound checking against the 
address of a global variable (introduced by stack shield). 
The auxiliary stacks and global variables are assumed to 
be memory protected, while the actual implementation 
does not ensure this, thus leaving the protection system 
itself vulnerable. Denial of service, memory protection, 
recompilation of code and limited nesting depth are the 
shortcomings of this approach [Bulba00][Wilander02]. 

3.3 Propolice 
Propolice is a GCC patch [Etoh00] that is perhaps the 
most sophisticated compiler based protection 
mechanism. It borrows the idea of protecting the return 
address with canary values from StackGuard. 
Additionally it protects stack allocated variables by 
rearranging the local variables so that character buffers 
are always allocated at the bottom, next to the old base 
pointer, where they cannot be over flown to harm any 
other local variables. This safe stack frame built by 
Propolice ensures the protection of function pointers on 
the stack by placing them above the local character 
buffers in the stack frame. Denial of service and 
recompilation of code are the shortcomings of this 
approach. Moreover its protection is also limited to 
known stack based buffer overflow attacks only. 

3.4 Libsafe/Libverify 
This tool [Baratloo99] is similar to the solution 
proposed in this paper as it also provides a combination 
of static and dynamic protection. Statically it patches 
exploitable buffer manipulations functions in standard C 
library. A range check is done by a safe wrapper 
function before proceeding with the actual operation, 
which ensures that the return address and the base 
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pointer cannot be overwritten. Further protection is 
provided with Libverify using a dynamic approach 
similar to Stack Guard. It differs from the proposed 
solution in the way it determines the bound for a 
character buffer, it basically uses the old base pointer 
address on the stack as the boundary value and ensures 
that all buffer manipulation operations respect this 
boundary. This upper bound based protection still 
allows function pointers on the stack to be overwritten. 
Its protection is limited to stack based overflow attacks 
targeting the return address. 

3.5 TIED, LibsafePlus 
This is a newly developed tool for runtime buffer 
overflow protection. The idea of their protection method 
is similar to that presented in this paper; that is they first 
collect the size information of buffers in the program 
and then use it to detect overflows via function call 
interception as in Libsafe. They use a tool called TIED: 
Type Information Extractor and Depositor [Kumar04] 
that uses compiler generated debug information to 
obtain size information of static buffers (arrays). They 
address the problem of obtaining size information of 
dynamically allocated pointers by intercepting dynamic 
memory allocation functions like malloc.  This method 
fails to obtain size of pointers assigned using pointer 
arithmetic expressions. Since pointer arithmetic is a 
more serious and common challenge for determining 
buffer size, this method may not be very effective in 
defending against buffer overflow attacks specifically 
against those that overflow vulnerable pointers. 

3.6 LClint 
This is a static analysis tool [David01], which uses 
source code annotations to detect potential buffer 
overflow vulnerabilities. It uses the information 
provided in semantic comments to perform lightweight 
and efficient static analysis. While having a low false 
positive rate, this tool suffers from low true positives 
(that is it is not able to detect all likely buffer overflow 
vulnerabilities) [Wilander02]. It requires further 
enhancement as far as the security part is concerned. 
Moreover it suffers from the inherent limitation of static 
approaches of not being able to accurately predict the 
process’s runtime state. 

3.7 Return Address Defender 
This tool [Tzi01] also intends to protect against return 
address based stack overflow attacks by copying the 
return address as in stack shield, but ensures protection 
of its copy of the return address. It can protect against 
long jump pointer based attacks too, but incurs a greater 
overhead.  This tool is very efficient in detecting return 
address based attacks however it cannot defend against 
any other kind of buffer overflow attack.  

4. Design and Approach 
The Hybrid Approach proposed in this paper uses static 
analysis and dynamic enforcement to ensure that no 
character buffer is written to, beyond its maximum 
allocated size. In order to do this, one needs to obtain 
the allocated size information of each buffer in the 
program and make this information available at runtime. 
This is done via static analysis of the source code. The 
static analyzer proposed in this paper obtains size 
information of statically allocated buffers and facilitates 
for obtaining size information of dynamically allocated 
buffers by inserting statements into the source code. 
These statements calculate allocated size at runtime. It 
also facilitates the availability of the size information 
collected, at runtime, by inserting appropriate metadata 
access operations in the source code. The dynamic 
counterpart of the solution ensures enforcement of 
buffer boundaries at runtime. The dynamic counterpart 
consists of a library of safe wrapper functions to unsafe 
buffer manipulation functions of standard C library. The 
safe counterparts perform bound checking using the 
metadata (allocated size of buffer) made available by 
static analyzer to prevent overflows during buffer write 
operations. Since most buffer manipulation operations 
are done via standard C library buffer manipulation 
functions, we believe that ensuring proper bound 
checking at these interfaces will help prevent buffer 
overflows.  

4.1 Extracting Allocated Size Information 
Static analysis of source code is used to obtain size 
information of buffers defined in the program. Static 
analysis of source code provides a lightweight method 
to obtain and access buffer size information at runtime  
Allocated sizes of static buffers are obtained by simply 
scanning the input source code. While the process of 
obtaining size information of dynamically allocated 
buffers (pointers) is more involved and is dependent on 
the method of allocation. A pointer can be allocated in 3 
different methods: (1) Using dynamic memory 
allocation functions like malloc, calloc of standard C 
library. (2) Using pointer arithmetic expressions 
consisting of pointers and numeric constants. (3) 
Arbitrary assignment to an arbitrary pointer. Size 
information of pointers in the first case is obtained at 
runtime using metadata enabled wrapper functions to 
malloc family of functions. Calls to malloc family of 
functions in the source code are transformed to 
equivalent calls to the corresponding metadata enabled 
wrappers. The wrapper functions call the actual standard 
C memory allocation function and post the allocated 
size to the metadata table, thus making the size 
information available at runtime.   

For dynamic allocations using pointer arithmetic 
expressions, the static analyzer attempts to evaluate the 
resulting size as much as possible statically. It then 
inserts a statement(s) into the source code that take care 
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of posting the resulting size to the metadata table at 
runtime. Present implementation ignores arbitrary 
pointer allocation, as the allocated size in this case is not 
fixed and depends upon the heap size available at the 
time of allocation. A pointer assigned in this way can 
rarely be exploited to launch a targeted buffer overflow 
attack because the chances of guessing the precise 
position and the allocated size is min imal even after a 
number of unsuccessful attempts.  However we are 
planning to accommodate this case in future versions, 
wherein we would obtain the boundaries of the heap at 
that point and use that as the upper bound. This will 
ensure safety from denial of service attacks caused by 
overflowing the heap completely. The process of 
extracting buffer size information in each case can be 
better understood by an example: 

Figure 1: Example 1 

 
 

 

 
Output Metadata INI file: 

# section name corresponds to function name  

[main]  

buff = 100 

# -1 size indicates pointers.  

ptr = -1 

ptr1 = -1 

 

Input Source Code: 
main() { 
      char buff[100]; 
      char *ptr,  
      ptr1 = malloc(200); 
      ptr = ptr1; 
      ptr = buff +6; 
  } 
 

Modified Code Metadata Enabled Code:  
 

Note: Statements inserted/modified by the static 
analyzer are shown in italics 
 

// include the header file for solutions safe library 
functions  and utility functions 
#include <solution.h> 
main() { 
// metadata key value table declaration 
     keyValueTable  pKVT[3];   
//populate table with values from INI file 
     populate_metadata(pKVT, 3); 
     char buff[100]; 
     char *ptr;  
// change malloc call  to equivalent safe_malloc call 
    *ptr1 = safe_malloc(pKVT, 3, 3, 200); 
      ptr = ptr1; 
// first get size of  buffer ptr1     
     int dummyVarMain =getbuffersize( pKVT, 3, 3);  
 // Then post this size to the metadata table   
     postbuffersize(pKVT, 3, 2, dummyVarMain); 
     ptr = buff +6; 
// size of buff is known at compile time, the size is  
//evaluated completely and posted to the metadata 
//table 
     postbuffersize(pKVT, 3, 2, 94);   
}       
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4.2 Obtaining Buffer Size at Runtime 
The solution provides utility functions: getbuffersize() 
and postbuffersize() that get and set buffer sizes at 
runtime. They perform simple lookup operations on the 
metadata key-value table to get/set size of the subject 
buffer. While evaluating pointer arithmetic expressions, 
the static analyzer inserts calls to getbuffersize and 
postbuffersize functions in the source code for 
evaluating and posting the resulting size, as illustrated 
in the previous example.  The safe buffer manipulation 
functions call the getbuffersize function to obtain 
allocated size of the subject buffer, while the safe buffer 
allocation functions call the postbuffersize function to 
post the allocated size to the metadata table. The 
common metadata parameters required by these 
functions are: pointer to the metadata key-value table, 
size of the table and index of the subject buffer in the 
table. The buffers are indexed according to their order of 
declaration. All the metadata parameters required by 
these functions are known at compile time and the static 
analyzer takes care of inserting them in the source code 
wherever required. 

4.3 Safe Library 
Our solution provides a library of safe functions that 
ensure proper bound checking at buffer manipulation 
interfaces during runtime. The safe library provided by 
the proposed solution consists of safe buffer 
manipulation functions and metadata enabled buffer 
allocation functions. Any function that writes to a buffer 
without proper bound checking in considered an unsafe 
buffer manipulation function The safe buffer 
manipulation functions are wrapper functions to their 
unsafe counterparts, which perform proper bound 
checking. The safe functions retrieve buffer bound 
information (allocated size) from the metadata made 
available by the static analyzer to perform bound 
checking. A safe function detects a buffer overflow 
attempt by comparing the size of the data to be written 
to the buffer with the buffer’s allocated size. 

 Upon detecting an overflow attempt it will either 
continue the write operation with safe arguments or will 
abort the operation and terminate program execution. If 
the safe function is configured to not to terminate the 
program execution upon detecting an overflow attempt, 
it will ensure that the overflow attempt will not succeed 
by truncating the data to be written to the buffer to that 
of the buffer’s allocated size. The intended unsafe buffer 
write function is then called with the newly created 
truncated safe parameters.  

The behavior of the safe function upon detecting an 
overflow attempt is a configurable option. The solution 
presented in this paper, considers the data used to 
overflow a buffer as non malicious as long as the buffer 
boundaries are respected. Hence by default it does not 

abort execution of the program or the write operation 
upon detecting an overflow attempt. This ensures 
protection from denial of service attacks launched via 
buffer overflows. However the user can configure it to 
abort program execution if he thinks that the overflow 
data is malicious and should never be copied. 

Figure 2: Example 2 

 

The safe library is similar in concept to that of 
interception, but intercepted functions do not serve our 
purpose, as we need extra metadata parameters to obtain 
the buffer size.  Also any program that calls our safe 
functions must go through static analysis; this is another 
important reason for introducing a new library of safe 
functions instead of using library call interception in this 
solution. 

The static analyzer takes care of modifying calls to 
unsafe buffer manipulation functions to equivalent calls 
to their safe counterparts. It uses a configuration file that 
contains list of unsafe functions, their corresponding 
safe counterpart, and the function call transformation 
details. Based on the entries in the configuration file, it 
inserts the required metadata parameters and modifies 
the function name. The example shown in figure 2 
illustrates the function call transformation done by the 
static analyzer. 

The solution provides safe wrappers to certain most 
commonly used unsafe buffer manipulation functions of 
standard C library. However end users can extend the 
protection offered, by writing such safe wrappers to any  

Input Source Code: 
int main() { 
char buff[100]; 
char *p, *p1; 
gets(buff);  } 
 
Modified Code Metadata Enabled Code:  
 

Note: Statements inserted/modified by the static 
analyzer are shown in italics 
 

// include the header file for solutions safe library  
// functions  and utility functions 
#include <solution.h> 
main() { 
keyValueTable pKVT[3]; 
populate_keyvaluetable(pKVT, 3); 
char buff[100]; 
char *p, *p1; 
// Replaced safe function call 
safe_gets(pKVT, 3, 1 , buff); 
} 
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user defined buffer manipulation function in their 
application that is likely to be exploited to launch a 
buffer overflow attack.  

It is very easy to write a safe wrapper function to an 
unsafe buffer manipulation function. All a safe wrapper 
function has to do is, call the getbuffersize function to 
get the allocated size of the subject buffer (buffer that is 
being written to), and perform bound checking before 
proceeding with the intended write operation. The static 
analyzer will automatically take care of transforming 
the calls to the unsafe user defined buffer manipulation 
function to that of its safe wrapper. User needs to make 
an entry corresponding to the unsafe user defined 
function in a configuration file that contains the list of 
unsafe functions for which the static analyzer performs  
function call transformation.  

The buffer allocation functions of standard C library 
need to be replaced by metadata enabled counterparts of 
the solution’s safe library to ensure the availability of 
allocated size information. The metadata enabled buffer 
allocation functions are also wrapper functions that post 
the allocated size to the metadata table. They can be 
considered as runtime counterparts to the static analyzer 
which provides the size information of static buffers.  

5. Results 

5.1 Test Scenarios and Setup 
The solution has been tested in different scenarios. 
These tests assess the functionality and performance of 
the solution in different attack and worst-case scenarios.  

Test 1 tests the functional effectiveness of the proposed 
solution in different attack scenarios. Some of the most 
popular buffer overflow attack scenarios have been 
identified and tested against the solution. A comparison 
of the effectiveness and accuracy of the proposed 
solution against that of other dynamic buffer overflow 
defense methods is presented.  

Test 2 is a micro bench performance test that is used to 
assess the overhead incurred by each of the metadata 
enabled safe library functions. The overhead incurred is 
analyzed in comparison to that of Libsafe counterparts.  

Test 3 is a macro bench performance test that is used to 
analyze the worst-case performance of the proposed 
solution. The analysis is again done by comparing the 
performance of the solution with that of Libsafe in these 
scenarios. 

All the tests were performed on a Linux machine that 
runs Suse Linux kernel version 2.4.21 on a 2GHz Intel 
Pentium laptop. Gcc version used is 3.3.1 

5.2 Attack Coverage Test  
In this setup, we test the ability of the proposed solution 
to prevent buffer overflow attacks in different attack 
scenarios. These scenarios cover most of the possible 

methods of launching a buffer overflow attack. The 
attack scenarios are chosen from publications about 
buffer overflow attacks, more specifically from John 
Wilander’s Masters Thesis [Wilander02] where in the 
author analyses the effectiveness of different dynamic 
buffer overflow defense methods based on their 
performance in these attack scenarios. The attack 
techniques chosen are generic and are not targeted 
towards exploiting vulnerable features of a specific 
solution. The tests are conducted using exploits that use 
the techniques mentioned below. The attack scenarios 
are classified into two categories based on the location 
of the vulnerable (overflow-able) buffer and the method 
of overflow.  

5.2.1 Attack Targets:  
The following common attack targets have been chosen 
for launching buffer overflows in this test.  

1. Target T1: Function return address stored on the 
stack. 

2. Target T2: Base Pointer on the stack. 

3. Target T3: Program defined function pointer on the 
stack. 

4. Target T4: Program defined function pointer on the 
heap or in BSS segment. 

5. Target T5: Parameters to a system call that is 
security critical. By modifying the parameters to 
certain system calls , the attacker exploits the 
privileges of the vulnerable program to accomplish 
his malicious intentions.  

6. Target T6: Implicit function pointers are function 
pointers not declared in the program such as  entries 
in the program’s global offset table or address of 
the .dtors section. The global offset table has 
addresses of system functions that are called by the 
program; by overwriting these entries the attacker 
can execute code of his choice. 

7. Target T7: Management Information header of a 
dynamically allocated chunk of memory. The 
management information header is overwritten to 
write attacker intended values to fd and bk fields of 
the header causing execution of malicious code. 

5.2.2 Method 1:  
Attack the target by overflowing a buffer, all the way to 
the target: technique is to attack the target directly by 
overflowing a vulnerable buffer to overwrite all the 
memory between the vulnerable buffer and the intended 
target address.  

Table 1 below shows the effectiveness of the proposed 
solution along with that of other defense methods in the 
above mentioned attack scenarios. The results shown in 
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the tables are based on the evaluation of the theoretical 
concepts behind each solution and on their performance, 
when tested against different exploits that use the above 
mentioned attack methods.   

Table 1: Effectiveness of Different Dynamic Buffer 
Overflow Defense against attacks based on 
techniques described in Category 1 

 

 Defense 
Method 

T1 T2 T3    T4 T5 T6 T7 

Proposed 
Solution 

P P P P P P P 

Libsafe/ 
LibVerify H H      

StackGuard  
Random 

XOR 
Canary 

H       

StackGuard  
Terminator 

Canary 
H       

Stack 
Shield 

Global Ret 
Stack 

P  H H    

Stack 
Shield 

Range Ret 
Check 

H  H H    

Stack 
Shield 

Global & 
Range 

P  H H    

Return 
Address 
Defender 

H       

ProPolice H H P     

 

Note: Prevent (P) implies that the intended attack was 
prevented without terminating the program. Halt (H) 
implies that the intended attack was stopped by 
terminating the program. Blank column indicates that 
the  attack was not detected/prevented by the defense 
method. 

5.2.3 Method 2:  
Attack the target by overflowing a buffer, to redirect an 
adjacent pointer to the target: technique is to attack the 
target by overflowing a vulnerable buffer to overwrite 
an adjacent pointer causing it to point to the intended 
target address. The attacker then uses the redirected 
pointer to alter the target accordingly. 

 

Table 2: Effectiveness of Different Dynamic Buffer 
Overflow Defense against attacks based on 
techniques described in Category 2  

Defense 
Method 

T1 T2 T3 T4 T5 T6 T7 

Proposed 
Solution 

P P P P P P P 

Libsafe/ 
LibVerify 

H H      

StackGuard  
Random 

XOR 
Canary 

H       

StackGuard  
Terminator 

Canary 
       

Stack 
Shield 

Global Ret 
Stack 

P  H H    

Stack 
Shield 

Range Ret 
Check 

H  H H    

Stack 
Shield 

Global & 
Range 

P  H H    

Return 
Address 
Defender 

H       

ProPolice P P P     

 

The Overall Performance of the different Defense 
Methods in the attack scenarios tested, is shown in table 
3. The numbers in the table reveal that the solution is 
the most effective defense method with 100% attack 
coverage. This proves our claim that the proposed 
defense is not attack specific and that it  has the ability to 
catch any kind of buffer overflow attack. Propolice and 
stack shield follow next with about 43% coverage; the 
poor performance of the rest of the defense methods 
highlight their attack specific nature. 

Table 3: Overall effectiveness of the different 
dynamic defense methods in the different attacks 
scenarios tested 

Defense Method Attacks 
Prevented 

Attacks 
Halted 

Attacks 
Missed 

Proposed 
Solution 

14 (100%) 0 0 
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Defense Method Attacks 
Prevented 

Attacks 
Halted 

Attacks 
Missed 

Libsafe/LibVerify 0 4 
(28.57%) 

10 
(61.43%) 

Stack Guard 
Random XOR 

Canary 
0 3 

(21.43%) 
11 

(78.57%) 

Stack Guard 
Terminator 

Canary 
0 1 (7.14%) 13 

(92.86%) 

Stack Shield 
Global Ret Stack 

2 
(14.28%) 

4 
(28.57%) 

8 
(57.14%) 

Stack Shield 
Range Ret Check 

 6 
(42.86%) 

8 
(57.14%) 

Stack Shield 
Global & Range 

2 
(14.28%) 

4 
(28.57%) 

8 
(57.14%) 

Return Address 
Defender  2 

(14.28%) 
12 

(85.72%) 

Propolice 4 
(28.57%) 

2 
(14.28%) 

8 
(57.14%) 

 

5.3 Micro Bench Test 
This test assesses the micro bench performance of the 
solution. The overhead imposed by the solution for 
initializing and maintaining the metadata is measured. 
Also the overhead imposed by seven of the solution’s 
safe library functions is measured and compared to that 
of Libsafe counterparts. Timing measurements are done 
using wall clock elapsed time as reported by 
gettimeofday.  

Table 4: Initialization Overhead vs. Number of 
Buffers in the Test Program 

Number of Buffers Initialization Overhead 

100 250us 

200 256us 

500 263us 

750 265us 

1000 270 us 

 

The initialization overhead is measured as the time 
taken by the populate_metadata() function, which 
includes the time to verify authenticity (signature 
verification) of the metadata INI file, to open it and  to 
populate the metadata table with its key-value entries. 
Table 4 shows the initialization times for programs with 
different metadata table sizes (metadata table size is 
equal to the number of character buffers declared in the 
program). It can be observed that the initialization 

overhead remains more or less constant as the numbers 
of buffers in the program increase. This is because most 
of the processing time is taken for signature verification 
and file open operations in the populate_metadata 
function. 

 We realize that this overhead is negligible for macro 
applications, but can significantly slowdown small 
applications. To overcome this shortcoming we have 
introduced an option to the end user, which when 
enabled instructs the static analyzer to populate the 
metadata keyValueTable directly using the metadata 
information it collected. When this option is enabled the 
initialization overhead was reduced to 10 microseconds 
for a program with 100 buffers. This is because of the 
time saved in executing a set of assignment statements 
inserted by the static analyzer instead of the more costly 
signature verification and file access operations.  We 
observed that the initialization overhead in either case is 
much less than that of Propolice, Libsafe or any 
instrumentation based defense mechanism 

The metadata maintenance overhead is assessed by 
measuring the time taken by postbuffersize method. The 
postbuffersize method imposes a negligible constant 
overhead of about 0.1 microsecond per call. The number 
of calls to the postbuffersize method is estimated to be 
around 1000 in the worst case. This is because the static 
analyzer uses optimization techniques that consolidate 
trivial calls to postbuffersize method to a single call. 
These optimization techniques are used while 
processing trivial pointer manipulation expressions 
within a loop.  

The processing times of seven functions of the 
solution’s safe library were measured. We used standard 
256 byte arguments to the functions while measuring 
their processing times. The processing times of the 
original unsafe counterparts and Libsafe counterparts of 
each of these seven functions were also measured using 
the same arguments and under similar conditions. 
Figure 2 shows the processing times of the functions in 
microseconds.  

We can observe that the difference between the 
processing times of the solution’s safe library functions 
and that of the original functions is negligible in spite of 
the additional bound checking. In some cases the 
solution’s functions as in sprintf outperform the original 
versions. This can be attributed to the low-level 
optimizations done in solution’s safe library functions. 
They perform optimizations similar to that of the 
Libsafe functions.  
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Figure 3: Results of Micro Bench Test  

However we can observe a marked difference between 
the processing times of the solution’s safe functions and 
that of the Libsafe functions, this can be attributed to the 
greater bound checking overhead of Libsafe functions. 
This is because Libsafe functions need to check for 
applicability before obtaining bounds information, also 
the process for obtaining bounds is more involved than 
just reading a particular metadata table entry as in the 
solution’s safe library. 

The figure illustrates that the solution’s safe malloc 
function incurs a slight overhead of 0.02 micro seconds 
which attributes to the overhead of inserting the 
allocated size information in the metadata table.  

5.4 Macro Bench Test 
This test measures the performance of the solution in 
applications that present worst-case macro bench 
scenarios. Based on the way the solution was designed, 
different worst-case situations were identified and 
incorporated into three programs against which the 
solution was tested. Figure 3 shows the execution time 
of the programs when executed (i) without any security 
measure (ii) using Libsafe (iii) using solution. The 
execution times reported are the real time execution 
times reported by the time function. 

Program1 has 1000 character buffers, and performs 
10,000,000 strcpy operations with arguments of size 256 
bytes. All the buffers used in this program are statically 
allocated.  This specification is relevant for the solution, 
as the metadata maintenance overhead depends on the 
allocation of the buffers in the program. In this case the 
metadata maintenance overhead is negligible, as the 
buffer sizes do not change at runtime. We can observe 
that the solution imposes an acceptable overhead of 
about 40%, which is equal to that of Libsafe given the 
worst-case situation involving 10,000,000 strcpy 
operations. 

Program 2 also has 1,000 character buffers, but the 
character buffers in this program are dynamic. This 
program performs 50,000,000 strcpy operations on a 
character pointer allocated using a pointer assignment 
operation in a loop. The pointer is manipulated in each 
of 50,000,000 iterations of the loop, before calling 
strcpy.  Program 2 presents worse condition than 
Program1 for the solution as it involves additional 
50,000,000 calls to postbuffersize function because of 
pointer manipulation before calling strcpy. However the 
results show a similar 30% overhead as in Program1, 
this can be attributed to the negligible overhead of the 
postbuffersize function and the low-level optimizations 
in solution’s safe library functions. Contrary to our 
expectations the performance of Libsafe in this case is 
much worse than the solution. This anomaly can 
probably be attributed to the bound determination 
process in Libsafe. 

Program 3 is used to assess the worst-case performance 
of the solution when using malloc for allocation. It 
consists of a 1,000 character buffers and makes 
10,000,000 malloc calls in a loop. As the solution 
modifies each of these malloc calls to safe_malloc calls 
that write allocation information to the metadata table 
upon successful allocation. Results indicate a 40 - 45% 
overhead, which is acceptable given the worst-case 
situation.  
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 Figure 4: Results of Macro Bench Test 

The solution was tested against many other stand-alone 
application programs and the results indicate an 
acceptable performance overhead about 10% -15%. In 
most cases the performance of the solution was better 
than that of Libsafe that is so far considered the most 
efficient buffer overflow defense method. 

6. Conclusions 

The solution presented in this paper provides an 
efficient method of defense against buffer overflow 
attacks. Its hybrid method builds on the strengths of 
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static and dynamic methods providing a comprehensive 
defense against buffer overflow attacks. The solution 
was implemented and tested under various possible 
attack scenarios. The test results prove the efficiency of 
the solution in defending against different types of 
buffer overflow attacks.  

The performance of the solution was also assessed using 
micro bench and macro bench tests. The comparison 
results prove the solution as the most efficient method 
of defense. Based on the solution’s fundamental concept 
for defense and the results of test1, it can be confidently 
claimed that this solution can be very effective in 
defending against unknown buffer overflow attacks. We 
believe that the universal applicability (ability to defend 
against any kind of buffer overflow attack), minimal 
performance overhead, and above all the ability to 
defend against unknown buffer overflow attacks, can 
qualify it as a silver bullet defense method. 

Testing the solution under different attack scenarios 
proved its resilience against generic buffer overflow 
attacks. However the implemented solution needs 
further improvement rendering it resilient to attacks 
targeting specific features and limitations of the 
solution. Current implementation of the solution can 
only protect stand-alone programs; the static analyzer 
needs to be extended to capture dependencies of a 
program to overcome this limitation. The static analyzer 
needs to be enhanced to be able to obtain bound 
information of a second level character buffer (pointer 
to a character pointer).  

We recognize that the above-mentioned limitations can 
be overcome by simple extensions to the static analyzer 
and are currently working on it. We also recognize that 
the performance of the solution can be greatly improved 
by customizing the static analyzer to the subject 
program. To this end, we are working on introducing 
customizability options to the end user.  Current 
implementation of the static analyzer cannot perform 
incremental analysis, each time a user adds a new 
module or includes a new library he will have to rerun 
the static analyzer on all the contributing source files. 
To efficiently handle change, we intend to enhance the 
design and implementation of the static analyzer to 
make it an incremental and easily pluggable application. 
Future direction of work involves enhancement of the 
static analyzer to address the above limitations. 
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