
A Hybrid Method of Defense against Buffer Overflow Attacks1

Annapurna Dasari and Partha Dasgupta

1 This research is partially supported by grants from AFOSR and DARPA.

Abstract

Buffer Overflow Attacks that exploit memory overruns
in a variety of ways have been the most effective and
difficult to prevent, methods of compromising system
security. The root cause for exploitation of these
vulnerabilities is the lack of availability of allocated size
information of buffers at runtime. Consequently no
bound checking is done in standard C library functions
that are the most common interfaces for buffer
manipulation leaving most C programs vulnerable to
buffer overflow attacks. Ensuring proper bound
checking at these interfaces can help prevent buffer
overflow attacks.

Static approaches do to bounds checking does not
work, as it is not possible to know the allocated size of
dynamically allocated buffers at compile time. On the
other hand, relying on pure dynamic approaches for
collecting allocated size information incurs high
runtime overhead. A hybrid approach that collects
buffer bound information using static and dynamic
methods and ensures enforcement of these boundaries
at runtime can be very effective in preventing buffer
overflows. Such a hybrid approach lowers the
overhead of obtaining bound information while
improving the accuracy of the information obtained.
Tests on the implemented hybrid defense method
promise efficient prevention and complete coverage of
various buffer overflow attacks.

Keywords: Information Security, Software Security.

1. sIntroduction
Buffer Overflow vulnerabilities are being

persistently exploited to successfully penetrate into
system security. About 50% of the attacks reported by
CERT [CERT02] are based on buffer overflow
vulnerabilities. Notorious attacks based on buffer
overflow vulnerabilities have been around for the past
15 years, with the 1998 Morris’s Internet worm being
the first well-known attack of its kind. They dominate
the class of remote penetration attacks, where-in an
attacker exploits a buffer overflow vulnerability by
feeding a well crafted oversized input to the vulnerable
program, thereby injecting and executing the code of his
choice.

A buffer is a contiguous block of computer memory that
holds multiple instances of the same data type. In C

language, the word buffer commonly refers to character
arrays (static) and character pointers (dynamic). A
Buffer Overflow occurs when a buffer is written beyond
its maximum allocated length, thus causing the memory
immediately following the end of the buffer to be
overwritten. The overflow can inject foreign (attack)
code into an unsuspecting process and then hijacks
control of that process to execute the injected code. The
hijacking of control is usually accomplished by
overwriting code pointers (like return addresses on the
process stack, function pointers, parameters to relevant
system calls or library calls) in the process memory
[Aleph96].

Programs written in C language have always been
plagued with Buffer Overflow vulnerabilities. This is
because C language does not automatically check for
array out-of-bounds condition and illegal pointer
references. Second important reason being, most of the
common library functions in C - string manipulation and
input functions (scanf and printf and gets family of
functions) are exploitable, i.e., they do not check for
overflows while writing to buffers. Buffer Overflows
under normal conditions cause the program to crash,
however an attacker can exploit these vulnerabilities to
accomplish malicious tasks. Therefore it is left to the
programmer to explicitly check for such attacks, which
is difficult and sometimes impossible (for example,
gets() may encounter a large string and assign past the
input buffer limitations.)

The methods of defense against Buffer Overflow attacks
can be broadly classified as static and dynamic. Static
methods of defense use source code analysis to detect
potential buffer overflow vulnerabilities, which can
possibly be exploited at runtime to launch an attack.
Dynamic methods of defense prevent stack based buffer
overflow attacks by checking if the known attack targets
(like function return address or old base pointer on the
stack) have been tampered with, before returning
control to the target.

Numerous methods of defense against Buffer Overflow
attacks have been proposed but none of them can
completely prevent or detect all kinds of buffer
overflow attacks. This is because most of them
concentrate on a particular kind of buffer overflow
attacks (specifically stack based buffer overflows that
rely on function return address corruption to launch an

 - 2 -

attack) and they use approximate bounds to determine
the possibility of a buffer overflow.

A Program can be completely defended against Buffer
Overflow attacks when it can be ensured that every
buffer manipulation function respects the maximum
allocated size bound of the buffer. This leaves us with
two problems:

1. To obtain the maximum allocated information of a
buffer

2. To make this information available to all buffer
manipulation functions and ensure that they respect
the boundaries of the buffer.

The solution presented in this paper addresses the above
problems using a hybrid approach. It uses static analysis
to obtain the allocated size of each buffer in the program
and the dynamic counterpart (that consists of a library
of safe wrappers to unsafe buffer manipulation
functions) makes use of this information and ensures
that every buffer manipulation function respects the
maximum allocated size bound of a buffer.

2. Motivation
In spite of the numerous methods of defense against
buffer overflow attacks, about 50% of the remote
attacks are based on buffer overflow vulnerabilities.
This implies that the defense methods are not complete
and that they can handle only a known subset of buffer
overflow attacks. Buffer Overflows can be completely
prevented if it can be ensured at runtime that no buffer
is written beyond its maximum allocated size. Ensuring
this , using pure static approach is not possible because
of two reasons – firstly the static analyzer does not have
allocated size information of all buffers and also the
static analyzer relies on the programmer to prevent
buffer overflows at runtime.

Most of the dynamic approaches proposed so far rely on
post overflow related conditions to detect and prevent
buffer overflow attacks. Such a protection mechanism
relies on known attack techniques and targets and hence
can be subverted by new unknown attacks. The crux of
the problem is to prevent overflow from occurring itself
rather than trying to stop the attack upon detecting an
overflow. The hybrid approach proposed in this paper
prevents buffer overflows by not allowing any buffer to
be written beyond its maximum allocated size.

3. Related Work

3.1 StackGuard
The StackGuard compiler [Cowan98] is the most well
known dynamic method of defense against buffer
overflow attacks. It is designed to detect and stop stack
based buffer overflow attacks targeting the return
address on the stack. It does so by placing a dummy
value (canary value) between the return address and the

stack data just before transferring control to a function.
Upon return from the function it checks if the inserted
canary value is intact to determine if the return address
has been tampered with, if so it aborts the process
execution. StackGuard protection can be subverted if
the attacker can guess the dummy value, or by abusing a
pointer to the return address [Bulba00]. It does not
address other types of overflows on stack and
elsewhere.

3.2 StackShield
This is a compiler patch for GCC [Wagner00], which is
also based on the idea of protecting the return address
on the stack. It implements three types of protection;
two of them defend against overwriting of the return
address and one against overwriting of function
pointers. It basically implements all of them using
auxiliary stacks or global variables to maintain copies of
the original contents i.e. contents before function calls
and then compares the respective contents before
returning control, to determine if the return address or
function pointers have been tampered with. It ensures
additional protection from function pointer based
attacks by detecting illegal manipulation of function
pointers at runtime, by bound checking against the
address of a global variable (introduced by stack shield).
The auxiliary stacks and global variables are assumed to
be memory protected, while the actual implementation
does not ensure this, thus leaving the protection system
itself vulnerable. Denial of service, memory protection,
recompilation of code and limited nesting depth are the
shortcomings of this approach [Bulba00][Wilander02].

3.3 Propolice
Propolice is a GCC patch [Etoh00] that is perhaps the
most sophisticated compiler based protection
mechanism. It borrows the idea of protecting the return
address with canary values from StackGuard.
Additionally it protects stack allocated variables by
rearranging the local variables so that character buffers
are always allocated at the bottom, next to the old base
pointer, where they cannot be over flown to harm any
other local variables. This safe stack frame built by
Propolice ensures the protection of function pointers on
the stack by placing them above the local character
buffers in the stack frame. Denial of service and
recompilation of code are the shortcomings of this
approach. Moreover its protection is also limited to
known stack based buffer overflow attacks only.

3.4 Libsafe/Libverify
This tool [Baratloo99] is similar to the solution
proposed in this paper as it also provides a combination
of static and dynamic protection. Statically it patches
exploitable buffer manipulations functions in standard C
library. A range check is done by a safe wrapper
function before proceeding with the actual operation,
which ensures that the return address and the base

 - 3 -

pointer cannot be overwritten. Further protection is
provided with Libverify using a dynamic approach
similar to Stack Guard. It differs from the proposed
solution in the way it determines the bound for a
character buffer, it basically uses the old base pointer
address on the stack as the boundary value and ensures
that all buffer manipulation operations respect this
boundary. This upper bound based protection still
allows function pointers on the stack to be overwritten.
Its protection is limited to stack based overflow attacks
targeting the return address.

3.5 TIED, LibsafePlus
This is a newly developed tool for runtime buffer
overflow protection. The idea of their protection method
is similar to that presented in this paper; that is they first
collect the size information of buffers in the program
and then use it to detect overflows via function call
interception as in Libsafe. They use a tool called TIED:
Type Information Extractor and Depositor [Kumar04]
that uses compiler generated debug information to
obtain size information of static buffers (arrays). They
address the problem of obtaining size information of
dynamically allocated pointers by intercepting dynamic
memory allocation functions like malloc. This method
fails to obtain size of pointers assigned using pointer
arithmetic expressions. Since pointer arithmetic is a
more serious and common challenge for determining
buffer size, this method may not be very effective in
defending against buffer overflow attacks specifically
against those that overflow vulnerable pointers.

3.6 LClint
This is a static analysis tool [David01], which uses
source code annotations to detect potential buffer
overflow vulnerabilities. It uses the information
provided in semantic comments to perform lightweight
and efficient static analysis. While having a low false
positive rate, this tool suffers from low true positives
(that is it is not able to detect all likely buffer overflow
vulnerabilities) [Wilander02]. It requires further
enhancement as far as the security part is concerned.
Moreover it suffers from the inherent limitation of static
approaches of not being able to accurately predict the
process’s runtime state.

3.7 Return Address Defender
This tool [Tzi01] also intends to protect against return
address based stack overflow attacks by copying the
return address as in stack shield, but ensures protection
of its copy of the return address. It can protect against
long jump pointer based attacks too, but incurs a greater
overhead. This tool is very efficient in detecting return
address based attacks however it cannot defend against
any other kind of buffer overflow attack.

4. Design and Approach
The Hybrid Approach proposed in this paper uses static
analysis and dynamic enforcement to ensure that no
character buffer is written to, beyond its maximum
allocated size. In order to do this, one needs to obtain
the allocated size information of each buffer in the
program and make this information available at runtime.
This is done via static analysis of the source code. The
static analyzer proposed in this paper obtains size
information of statically allocated buffers and facilitates
for obtaining size information of dynamically allocated
buffers by inserting statements into the source code.
These statements calculate allocated size at runtime. It
also facilitates the availability of the size information
collected, at runtime, by inserting appropriate metadata
access operations in the source code. The dynamic
counterpart of the solution ensures enforcement of
buffer boundaries at runtime. The dynamic counterpart
consists of a library of safe wrapper functions to unsafe
buffer manipulation functions of standard C library. The
safe counterparts perform bound checking using the
metadata (allocated size of buffer) made available by
static analyzer to prevent overflows during buffer write
operations. Since most buffer manipulation operations
are done via standard C library buffer manipulation
functions, we believe that ensuring proper bound
checking at these interfaces will help prevent buffer
overflows.

4.1 Extracting Allocated Size Information
Static analysis of source code is used to obtain size
information of buffers defined in the program. Static
analysis of source code provides a lightweight method
to obtain and access buffer size information at runtime
Allocated sizes of static buffers are obtained by simply
scanning the input source code. While the process of
obtaining size information of dynamically allocated
buffers (pointers) is more involved and is dependent on
the method of allocation. A pointer can be allocated in 3
different methods: (1) Using dynamic memory
allocation functions like malloc, calloc of standard C
library. (2) Using pointer arithmetic expressions
consisting of pointers and numeric constants. (3)
Arbitrary assignment to an arbitrary pointer. Size
information of pointers in the first case is obtained at
runtime using metadata enabled wrapper functions to
malloc family of functions. Calls to malloc family of
functions in the source code are transformed to
equivalent calls to the corresponding metadata enabled
wrappers. The wrapper functions call the actual standard
C memory allocation function and post the allocated
size to the metadata table, thus making the size
information available at runtime.

For dynamic allocations using pointer arithmetic
expressions, the static analyzer attempts to evaluate the
resulting size as much as possible statically. It then
inserts a statement(s) into the source code that take care

 - 4 -

of posting the resulting size to the metadata table at
runtime. Present implementation ignores arbitrary
pointer allocation, as the allocated size in this case is not
fixed and depends upon the heap size available at the
time of allocation. A pointer assigned in this way can
rarely be exploited to launch a targeted buffer overflow
attack because the chances of guessing the precise
position and the allocated size is min imal even after a
number of unsuccessful attempts. However we are
planning to accommodate this case in future versions,
wherein we would obtain the boundaries of the heap at
that point and use that as the upper bound. This will
ensure safety from denial of service attacks caused by
overflowing the heap completely. The process of
extracting buffer size information in each case can be
better understood by an example:

Figure 1: Example 1

Output Metadata INI file:

section name corresponds to function name

[main]

buff = 100

-1 size indicates pointers.

ptr = -1

ptr1 = -1

Input Source Code:
main() {
 char buff[100];
 char *ptr,
 ptr1 = malloc(200);
 ptr = ptr1;
 ptr = buff +6;
 }

Modified Code Metadata Enabled Code:

Note: Statements inserted/modified by the static
analyzer are shown in italics

// include the header file for solutions safe library
functions and utility functions
#include <solution.h>
main() {
// metadata key value table declaration
 keyValueTable pKVT[3];
//populate table with values from INI file
 populate_metadata(pKVT, 3);
 char buff[100];
 char *ptr;
// change malloc call to equivalent safe_malloc call
 *ptr1 = safe_malloc(pKVT, 3, 3, 200);
 ptr = ptr1;
// first get size of buffer ptr1
 int dummyVarMain =getbuffersize(pKVT, 3, 3);
 // Then post this size to the metadata table
 postbuffersize(pKVT, 3, 2, dummyVarMain);
 ptr = buff +6;
// size of buff is known at compile time, the size is
//evaluated completely and posted to the metadata
//table
 postbuffersize(pKVT, 3, 2, 94);
}

 - 5 -

4.2 Obtaining Buffer Size at Runtime
The solution provides utility functions: getbuffersize()
and postbuffersize() that get and set buffer sizes at
runtime. They perform simple lookup operations on the
metadata key-value table to get/set size of the subject
buffer. While evaluating pointer arithmetic expressions,
the static analyzer inserts calls to getbuffersize and
postbuffersize functions in the source code for
evaluating and posting the resulting size, as illustrated
in the previous example. The safe buffer manipulation
functions call the getbuffersize function to obtain
allocated size of the subject buffer, while the safe buffer
allocation functions call the postbuffersize function to
post the allocated size to the metadata table. The
common metadata parameters required by these
functions are: pointer to the metadata key-value table,
size of the table and index of the subject buffer in the
table. The buffers are indexed according to their order of
declaration. All the metadata parameters required by
these functions are known at compile time and the static
analyzer takes care of inserting them in the source code
wherever required.

4.3 Safe Library
Our solution provides a library of safe functions that
ensure proper bound checking at buffer manipulation
interfaces during runtime. The safe library provided by
the proposed solution consists of safe buffer
manipulation functions and metadata enabled buffer
allocation functions. Any function that writes to a buffer
without proper bound checking in considered an unsafe
buffer manipulation function The safe buffer
manipulation functions are wrapper functions to their
unsafe counterparts, which perform proper bound
checking. The safe functions retrieve buffer bound
information (allocated size) from the metadata made
available by the static analyzer to perform bound
checking. A safe function detects a buffer overflow
attempt by comparing the size of the data to be written
to the buffer with the buffer’s allocated size.

 Upon detecting an overflow attempt it will either
continue the write operation with safe arguments or will
abort the operation and terminate program execution. If
the safe function is configured to not to terminate the
program execution upon detecting an overflow attempt,
it will ensure that the overflow attempt will not succeed
by truncating the data to be written to the buffer to that
of the buffer’s allocated size. The intended unsafe buffer
write function is then called with the newly created
truncated safe parameters.

The behavior of the safe function upon detecting an
overflow attempt is a configurable option. The solution
presented in this paper, considers the data used to
overflow a buffer as non malicious as long as the buffer
boundaries are respected. Hence by default it does not

abort execution of the program or the write operation
upon detecting an overflow attempt. This ensures
protection from denial of service attacks launched via
buffer overflows. However the user can configure it to
abort program execution if he thinks that the overflow
data is malicious and should never be copied.

Figure 2: Example 2

The safe library is similar in concept to that of
interception, but intercepted functions do not serve our
purpose, as we need extra metadata parameters to obtain
the buffer size. Also any program that calls our safe
functions must go through static analysis; this is another
important reason for introducing a new library of safe
functions instead of using library call interception in this
solution.

The static analyzer takes care of modifying calls to
unsafe buffer manipulation functions to equivalent calls
to their safe counterparts. It uses a configuration file that
contains list of unsafe functions, their corresponding
safe counterpart, and the function call transformation
details. Based on the entries in the configuration file, it
inserts the required metadata parameters and modifies
the function name. The example shown in figure 2
illustrates the function call transformation done by the
static analyzer.

The solution provides safe wrappers to certain most
commonly used unsafe buffer manipulation functions of
standard C library. However end users can extend the
protection offered, by writing such safe wrappers to any

Input Source Code:
int main() {
char buff[100];
char *p, *p1;
gets(buff); }

Modified Code Metadata Enabled Code:

Note: Statements inserted/modified by the static
analyzer are shown in italics

// include the header file for solutions safe library
// functions and utility functions
#include <solution.h>
main() {
keyValueTable pKVT[3];
populate_keyvaluetable(pKVT, 3);
char buff[100];
char *p, *p1;
// Replaced safe function call
safe_gets(pKVT, 3, 1 , buff);
}

 - 6 -

user defined buffer manipulation function in their
application that is likely to be exploited to launch a
buffer overflow attack.

It is very easy to write a safe wrapper function to an
unsafe buffer manipulation function. All a safe wrapper
function has to do is, call the getbuffersize function to
get the allocated size of the subject buffer (buffer that is
being written to), and perform bound checking before
proceeding with the intended write operation. The static
analyzer will automatically take care of transforming
the calls to the unsafe user defined buffer manipulation
function to that of its safe wrapper. User needs to make
an entry corresponding to the unsafe user defined
function in a configuration file that contains the list of
unsafe functions for which the static analyzer performs
function call transformation.

The buffer allocation functions of standard C library
need to be replaced by metadata enabled counterparts of
the solution’s safe library to ensure the availability of
allocated size information. The metadata enabled buffer
allocation functions are also wrapper functions that post
the allocated size to the metadata table. They can be
considered as runtime counterparts to the static analyzer
which provides the size information of static buffers.

5. Results

5.1 Test Scenarios and Setup
The solution has been tested in different scenarios.
These tests assess the functionality and performance of
the solution in different attack and worst-case scenarios.

Test 1 tests the functional effectiveness of the proposed
solution in different attack scenarios. Some of the most
popular buffer overflow attack scenarios have been
identified and tested against the solution. A comparison
of the effectiveness and accuracy of the proposed
solution against that of other dynamic buffer overflow
defense methods is presented.

Test 2 is a micro bench performance test that is used to
assess the overhead incurred by each of the metadata
enabled safe library functions. The overhead incurred is
analyzed in comparison to that of Libsafe counterparts.

Test 3 is a macro bench performance test that is used to
analyze the worst-case performance of the proposed
solution. The analysis is again done by comparing the
performance of the solution with that of Libsafe in these
scenarios.

All the tests were performed on a Linux machine that
runs Suse Linux kernel version 2.4.21 on a 2GHz Intel
Pentium laptop. Gcc version used is 3.3.1

5.2 Attack Coverage Test
In this setup, we test the ability of the proposed solution
to prevent buffer overflow attacks in different attack
scenarios. These scenarios cover most of the possible

methods of launching a buffer overflow attack. The
attack scenarios are chosen from publications about
buffer overflow attacks, more specifically from John
Wilander’s Masters Thesis [Wilander02] where in the
author analyses the effectiveness of different dynamic
buffer overflow defense methods based on their
performance in these attack scenarios. The attack
techniques chosen are generic and are not targeted
towards exploiting vulnerable features of a specific
solution. The tests are conducted using exploits that use
the techniques mentioned below. The attack scenarios
are classified into two categories based on the location
of the vulnerable (overflow-able) buffer and the method
of overflow.

5.2.1 Attack Targets:
The following common attack targets have been chosen
for launching buffer overflows in this test.

1. Target T1: Function return address stored on the
stack.

2. Target T2: Base Pointer on the stack.

3. Target T3: Program defined function pointer on the
stack.

4. Target T4: Program defined function pointer on the
heap or in BSS segment.

5. Target T5: Parameters to a system call that is
security critical. By modifying the parameters to
certain system calls , the attacker exploits the
privileges of the vulnerable program to accomplish
his malicious intentions.

6. Target T6: Implicit function pointers are function
pointers not declared in the program such as entries
in the program’s global offset table or address of
the .dtors section. The global offset table has
addresses of system functions that are called by the
program; by overwriting these entries the attacker
can execute code of his choice.

7. Target T7: Management Information header of a
dynamically allocated chunk of memory. The
management information header is overwritten to
write attacker intended values to fd and bk fields of
the header causing execution of malicious code.

5.2.2 Method 1:
Attack the target by overflowing a buffer, all the way to
the target: technique is to attack the target directly by
overflowing a vulnerable buffer to overwrite all the
memory between the vulnerable buffer and the intended
target address.

Table 1 below shows the effectiveness of the proposed
solution along with that of other defense methods in the
above mentioned attack scenarios. The results shown in

 - 7 -

the tables are based on the evaluation of the theoretical
concepts behind each solution and on their performance,
when tested against different exploits that use the above
mentioned attack methods.

Table 1: Effectiveness of Different Dynamic Buffer
Overflow Defense against attacks based on
techniques described in Category 1

 Defense
Method

T1 T2 T3 T4 T5 T6 T7

Proposed
Solution

P P P P P P P

Libsafe/
LibVerify H H

StackGuard
Random

XOR
Canary

H

StackGuard
Terminator

Canary
H

Stack
Shield

Global Ret
Stack

P H H

Stack
Shield

Range Ret
Check

H H H

Stack
Shield

Global &
Range

P H H

Return
Address
Defender

H

ProPolice H H P

Note: Prevent (P) implies that the intended attack was
prevented without terminating the program. Halt (H)
implies that the intended attack was stopped by
terminating the program. Blank column indicates that
the attack was not detected/prevented by the defense
method.

5.2.3 Method 2:
Attack the target by overflowing a buffer, to redirect an
adjacent pointer to the target: technique is to attack the
target by overflowing a vulnerable buffer to overwrite
an adjacent pointer causing it to point to the intended
target address. The attacker then uses the redirected
pointer to alter the target accordingly.

Table 2: Effectiveness of Different Dynamic Buffer
Overflow Defense against attacks based on
techniques described in Category 2

Defense
Method

T1 T2 T3 T4 T5 T6 T7

Proposed
Solution

P P P P P P P

Libsafe/
LibVerify

H H

StackGuard
Random

XOR
Canary

H

StackGuard
Terminator

Canary

Stack
Shield

Global Ret
Stack

P H H

Stack
Shield

Range Ret
Check

H H H

Stack
Shield

Global &
Range

P H H

Return
Address
Defender

H

ProPolice P P P

The Overall Performance of the different Defense
Methods in the attack scenarios tested, is shown in table
3. The numbers in the table reveal that the solution is
the most effective defense method with 100% attack
coverage. This proves our claim that the proposed
defense is not attack specific and that it has the ability to
catch any kind of buffer overflow attack. Propolice and
stack shield follow next with about 43% coverage; the
poor performance of the rest of the defense methods
highlight their attack specific nature.

Table 3: Overall effectiveness of the different
dynamic defense methods in the different attacks
scenarios tested

Defense Method Attacks
Prevented

Attacks
Halted

Attacks
Missed

Proposed
Solution

14 (100%) 0 0

 - 8 -

Defense Method Attacks
Prevented

Attacks
Halted

Attacks
Missed

Libsafe/LibVerify 0 4
(28.57%)

10
(61.43%)

Stack Guard
Random XOR

Canary
0 3

(21.43%)
11

(78.57%)

Stack Guard
Terminator

Canary
0 1 (7.14%) 13

(92.86%)

Stack Shield
Global Ret Stack

2
(14.28%)

4
(28.57%)

8
(57.14%)

Stack Shield
Range Ret Check

 6
(42.86%)

8
(57.14%)

Stack Shield
Global & Range

2
(14.28%)

4
(28.57%)

8
(57.14%)

Return Address
Defender 2

(14.28%)
12

(85.72%)

Propolice 4
(28.57%)

2
(14.28%)

8
(57.14%)

5.3 Micro Bench Test
This test assesses the micro bench performance of the
solution. The overhead imposed by the solution for
initializing and maintaining the metadata is measured.
Also the overhead imposed by seven of the solution’s
safe library functions is measured and compared to that
of Libsafe counterparts. Timing measurements are done
using wall clock elapsed time as reported by
gettimeofday.

Table 4: Initialization Overhead vs. Number of
Buffers in the Test Program

Number of Buffers Initialization Overhead

100 250us

200 256us

500 263us

750 265us

1000 270 us

The initialization overhead is measured as the time
taken by the populate_metadata() function, which
includes the time to verify authenticity (signature
verification) of the metadata INI file, to open it and to
populate the metadata table with its key-value entries.
Table 4 shows the initialization times for programs with
different metadata table sizes (metadata table size is
equal to the number of character buffers declared in the
program). It can be observed that the initialization

overhead remains more or less constant as the numbers
of buffers in the program increase. This is because most
of the processing time is taken for signature verification
and file open operations in the populate_metadata
function.

 We realize that this overhead is negligible for macro
applications, but can significantly slowdown small
applications. To overcome this shortcoming we have
introduced an option to the end user, which when
enabled instructs the static analyzer to populate the
metadata keyValueTable directly using the metadata
information it collected. When this option is enabled the
initialization overhead was reduced to 10 microseconds
for a program with 100 buffers. This is because of the
time saved in executing a set of assignment statements
inserted by the static analyzer instead of the more costly
signature verification and file access operations. We
observed that the initialization overhead in either case is
much less than that of Propolice, Libsafe or any
instrumentation based defense mechanism

The metadata maintenance overhead is assessed by
measuring the time taken by postbuffersize method. The
postbuffersize method imposes a negligible constant
overhead of about 0.1 microsecond per call. The number
of calls to the postbuffersize method is estimated to be
around 1000 in the worst case. This is because the static
analyzer uses optimization techniques that consolidate
trivial calls to postbuffersize method to a single call.
These optimization techniques are used while
processing trivial pointer manipulation expressions
within a loop.

The processing times of seven functions of the
solution’s safe library were measured. We used standard
256 byte arguments to the functions while measuring
their processing times. The processing times of the
original unsafe counterparts and Libsafe counterparts of
each of these seven functions were also measured using
the same arguments and under similar conditions.
Figure 2 shows the processing times of the functions in
microseconds.

We can observe that the difference between the
processing times of the solution’s safe library functions
and that of the original functions is negligible in spite of
the additional bound checking. In some cases the
solution’s functions as in sprintf outperform the original
versions. This can be attributed to the low-level
optimizations done in solution’s safe library functions.
They perform optimizations similar to that of the
Libsafe functions.

 - 9 -

0

0.5

1

1.5

2

2.5

3

3.5

strc
py

sp
rint

f
strc

at
fge

ts
ge

twd

rea
lpa

th
mallo

c

Function Name

T
im

e
(i

n
 u

s)
Original Time

Solution
Time
Libsafe Time

Figure 3: Results of Micro Bench Test

However we can observe a marked difference between
the processing times of the solution’s safe functions and
that of the Libsafe functions, this can be attributed to the
greater bound checking overhead of Libsafe functions.
This is because Libsafe functions need to check for
applicability before obtaining bounds information, also
the process for obtaining bounds is more involved than
just reading a particular metadata table entry as in the
solution’s safe library.

The figure illustrates that the solution’s safe malloc
function incurs a slight overhead of 0.02 micro seconds
which attributes to the overhead of inserting the
allocated size information in the metadata table.

5.4 Macro Bench Test
This test measures the performance of the solution in
applications that present worst-case macro bench
scenarios. Based on the way the solution was designed,
different worst-case situations were identified and
incorporated into three programs against which the
solution was tested. Figure 3 shows the execution time
of the programs when executed (i) without any security
measure (ii) using Libsafe (iii) using solution. The
execution times reported are the real time execution
times reported by the time function.

Program1 has 1000 character buffers, and performs
10,000,000 strcpy operations with arguments of size 256
bytes. All the buffers used in this program are statically
allocated. This specification is relevant for the solution,
as the metadata maintenance overhead depends on the
allocation of the buffers in the program. In this case the
metadata maintenance overhead is negligible, as the
buffer sizes do not change at runtime. We can observe
that the solution imposes an acceptable overhead of
about 40%, which is equal to that of Libsafe given the
worst-case situation involving 10,000,000 strcpy
operations.

Program 2 also has 1,000 character buffers, but the
character buffers in this program are dynamic. This
program performs 50,000,000 strcpy operations on a
character pointer allocated using a pointer assignment
operation in a loop. The pointer is manipulated in each
of 50,000,000 iterations of the loop, before calling
strcpy. Program 2 presents worse condition than
Program1 for the solution as it involves additional
50,000,000 calls to postbuffersize function because of
pointer manipulation before calling strcpy. However the
results show a similar 30% overhead as in Program1,
this can be attributed to the negligible overhead of the
postbuffersize function and the low-level optimizations
in solution’s safe library functions. Contrary to our
expectations the performance of Libsafe in this case is
much worse than the solution. This anomaly can
probably be attributed to the bound determination
process in Libsafe.

Program 3 is used to assess the worst-case performance
of the solution when using malloc for allocation. It
consists of a 1,000 character buffers and makes
10,000,000 malloc calls in a loop. As the solution
modifies each of these malloc calls to safe_malloc calls
that write allocation information to the metadata table
upon successful allocation. Results indicate a 40 - 45%
overhead, which is acceptable given the worst-case
situation.

0

1

2

3

4

5

6

7

8

Program 1 Program 2 Program 3

Program

T
im

e
(i

n
 s

ec
)

Original Time

Solution Time

Libsafe Time

 Figure 4: Results of Macro Bench Test

The solution was tested against many other stand-alone
application programs and the results indicate an
acceptable performance overhead about 10% -15%. In
most cases the performance of the solution was better
than that of Libsafe that is so far considered the most
efficient buffer overflow defense method.

6. Conclusions

The solution presented in this paper provides an
efficient method of defense against buffer overflow
attacks. Its hybrid method builds on the strengths of

 - 10 -

static and dynamic methods providing a comprehensive
defense against buffer overflow attacks. The solution
was implemented and tested under various possible
attack scenarios. The test results prove the efficiency of
the solution in defending against different types of
buffer overflow attacks.

The performance of the solution was also assessed using
micro bench and macro bench tests. The comparison
results prove the solution as the most efficient method
of defense. Based on the solution’s fundamental concept
for defense and the results of test1, it can be confidently
claimed that this solution can be very effective in
defending against unknown buffer overflow attacks. We
believe that the universal applicability (ability to defend
against any kind of buffer overflow attack), minimal
performance overhead, and above all the ability to
defend against unknown buffer overflow attacks, can
qualify it as a silver bullet defense method.

Testing the solution under different attack scenarios
proved its resilience against generic buffer overflow
attacks. However the implemented solution needs
further improvement rendering it resilient to attacks
targeting specific features and limitations of the
solution. Current implementation of the solution can
only protect stand-alone programs; the static analyzer
needs to be extended to capture dependencies of a
program to overcome this limitation. The static analyzer
needs to be enhanced to be able to obtain bound
information of a second level character buffer (pointer
to a character pointer).

We recognize that the above-mentioned limitations can
be overcome by simple extensions to the static analyzer
and are currently working on it. We also recognize that
the performance of the solution can be greatly improved
by customizing the static analyzer to the subject
program. To this end, we are working on introducing
customizability options to the end user. Current
implementation of the static analyzer cannot perform
incremental analysis, each time a user adds a new
module or includes a new library he will have to rerun
the static analyzer on all the contributing source files.
To efficiently handle change, we intend to enhance the
design and implementation of the static analyzer to
make it an incremental and easily pluggable application.
Future direction of work involves enhancement of the
static analyzer to address the above limitations.

7. References

[Aleph96] Aleph One, Smashing the stack for fun and
profit, http://immunix.org/StackGuard/profit.html,
November 1996.

[CERT02] CERT Coordination Center, Cert/cc statistics
1988-2001. http://www.cert.org/stats/, February
2002.

[McGraw] Gary McGraw and John Viega, An analysis
of how buffer overflow attacks work , IBM
developer Works: Security: Security articles.

[Cowan98] C. Cowan, C. Pu, D. Maier, J. Walpole, P.
Bakke, S. Beattie, A. Grier, P. Wagle, Q. Zhang,
and H. Hinton, StackGuard: Automatic adaptive
detection and prevention of buffer-overflow
attacks, pages 63–78, Proceedings of the 7th
USENIX Security Conference, January 1998.

[Wagner00] D.Wagner, J. S. Foster, E. A. Brewer, and
A. Aiken, A first step towards automated detection
of buffer overrun vulnerabilities, pages 3–17,
Proceedings of Network and Distributed System
Security Symposium, February 2000.

[Etoh00] H. Etoh, GCC extension for protecting
applications from stack smashing attacks.
http://www.trl.ibm.com/projects/security/ssp/,
June 2000.

[Baratloo99] Arash Baratloo, Navjot Singh, Timothy
Tsai, Libsafe: Protecting critical ele ments of
stacks.
http://www.research.avayalabs.com/project/libsafe
December 1999.

[David01] David Larochelle and David Evans, Statically
Detecting Likely Buffer Overflow Vulnerabilities,
USENIX Security Symposium, August 13-17,
2001.

[Wilander02] John Wilander, Security intrusions and
intrusion prevention, Master's thesis, Linkopings
universitet, http://www.ida.liu.se/~johwi, April
2002.

[Bulba00] Bulba and Kil3, Bypassig StackGuard and
StackShield. Phrack Magazine 56
http://www.phrack.org/phrack/56/p56-0x05, May
2000.

[Cowan00] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J.
Walpole, Buffer overflows: Attacks and defenses
for the vulnerability of the decade, pages119–129,
proceedings of the DARPA Information
Survivability Conference and Expo (DISCEX),
Hilton Head, January 2000.

[Kumar04] Kumar Avijit, Prateek Gupta and Deepak
Gupta, "TIED, LibsafePlus: Tools for runtime
buffer overflow protection", Pages 45-56,
proceedings of the 13th USENIX Security
Symposium, August 2004.

[Tzi01] Tzi cker Chiueh and Fu-Hau Hsu, RAD: A
Compile-time solution to buffer overflow attacks,
proceedings of the 21st International Conference
on Distributed Computing Systems (ICDCS),
April 2001.

