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ABSTRACT 
Application of integrated centralized control systems in 

buildings has been shown to be a very promising option to 

reduce energy consumption. The focus of this paper is on 

automated day-lighting systems which can modulate window 

blinds and electrical interior lights for maintaining the proper 

illumination levels and saving significant electrical energy in 

buildings. 

The algorithm proposed involves developing a preliminary 

baseline strategy for near-optimal blind slat angle settings for 

venetian blinds. We describe the predictive algorithm and 

validate the algorithm through experimental studies in both a 

virtual test cell as well as in an actual test room which have 

three separate sets of venetian blinds. The baseline strategy 

involves using a detailed lighting simulation program to predict 

illumination levels during selected days of the year and specific 

times of the day. The simulations are done by modifying the 

angels of blinds individually by pre-selected increments. It is 

then shown that this baseline data when properly extrapolated is 

adequate to predict near-optimal blind angles for most of the 

hours during the rest of the year.  

The study presented in this paper lays the foundation 

towards the development of an innovative integrated lighting 

control algorithm for high performance buildings using 

distributed sensors which will be described in a subsequent 

paper. 

INTRODUCTION 
There is a growing concern about buildings’ energy 

consumption and its impacts on environment [1]. In the last 

decade, several environmental reports have raised public 

awareness about the energy use and its consequences on 

environment and provided a better understanding of energy use 

characteristics in buildings, [2]. A significant part of the energy 

consumption is due to the growing demand for better indoor 

comfort in buildings, [3]. Buildings typically have a long life 

span, lasting for 50 years or more. It is, therefore, crucial to 

make sure that existing buildings are operated and maintained 

properly during their life time. In addition, application of 

effective energy efficient concepts on new buildings to reduce 

energy consumption and improve the level of comfort for 

occupants, is another key strategy. Studies have indicated that, 

in a building, 10-30% energy savings could be achieved through 

existing and cost effective equipment and operational 

technology available today. This savings fraction can double if 

cutting edge research ideas and transformational 

multidisciplinary research results are applied on buildings, [4-

14]. In this context, efficient intelligent control strategies are 

key design elements, and main motivation and focus of this 

paper. 

Furthermore, daylight is a basic need of human beings. It is 

generally known that daylight is able to affect physical, 

physiological and psychological conditions of occupants. 

During the last few years, architects and design professionals 
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started to recognize the importance of introducing natural 

lighting into buildings and its positive impact on the work 

environment. Recent studies reveal a correlation between 

environmental lighting and human performance and health, with 

positive results [15]. What is known, is that insufficient or 

inappropriate light exposure can disrupt standard human 

rhythms which may result in adverse consequences for 

performance, safety and health, [16-21]. 

To provide the optimum amount of daylight in a building 

based on visual and thermal comfort aspects, and reduce energy 

consumption, designing the proper daylighting systems and 

strategies play a very important role. A coordinated control 

strategy which integrates daylighting with electric lighting 

systems leads to substantial lighting energy savings in existing 

as well as new buildings. Results of one of the first studies 

demonstrate the impacts of manual control of window blinds on 

annual energy consumption. In this particular study, it is 

suggested that a blind system by itself, without a proper control 

strategy, will not contribute to significant energy savings, [22]. 

There are several research studies which investigated and 

developed different prediction methods to determine the 

optimal blind slat angle settings for the occupants, [23- 25]. 

Although these studies provide useful models and detailed 

guidelines to optimize the daylight, view and visual comfort, 

most of them are limited to specific solar latitude and 

geographical location. Moreover, in some of the control 

approaches where many design aspects such as daylighting, 

artificial lighting and comfort are integrated together, the nature 

of the control algorithm becomes very complicated which leads 

to complexity of the control system and difficulties in 

application. Operation and maintenance of such systems in 

buildings requires many hours of experts’ time and long delays 

in commissioning of the system. In addition, many of these 

research studies display integrated systems that are not 

responsive to different changes in the building shape and size 

and also in different climatic conditions, [26-28] 

This paper reports on a simulation-based study to establish a 

control baseline to predict the near-optimal blind slat angles 

inside an office space which is then validated on an actual test-

room environment.  

  

OBJECTIVES 
As mentioned earlier, the prediction method is the first step 

of designing an adaptive integrated control strategy which 

provides an initial base-line for optimal for blind angle settings 

in the office space. 

The strategy is developed on a small scale virtual test cell 

that represents a small office space. A set of daylighting 

simulations inside the virtual model was performed as input for 

the prediction algorithm which predicts the near-optimal blind 

angle settings for three venetian blinds. The main objective of 

this step was to predict the near-optimal settings in order to 

achieve a uniform daylight level on the defined work plane. 

METHODOLOGY 

Simulations 

The prediction approach is based on simulated data inside a 

small scale model which represents an office area. The test 

room model was built in ArchiCAD [29] and then imported to 

Relux Professional lighting software [30] for further analysis. 

The small scale virtual test bed model was built to investigate 

daylighting situation and pertains to a 4 by 4 by 4 feet office 

area with three 1 by 1.3 feet windows on the North, West and 

South walls (Figure 1). In addition, all interior walls and ceiling 

are out of Birch wood and the floor is furnished with a grey 

carpet.  All three windows have a clear glass with 80% 

transmittance and are equipped with matte aluminum blinds. 

The interior frames of the windows are also made of matte 

aluminum. The blinds slat angles are set on different degrees in 

order to control the amount of daylight entering the test cell. All 

measured lighting levels where calculated on a horizontal work-

plane inside the test cell which represented the actual working 

surface in an office. 

 

 
Figure 1. Virtual test cell plan and sensor locations for 

phase I of the study, (Test cell size: 4×4×4 feet). 

 

 

The calculations were done for Phoenix, Arizona (33◦ 27‘ 0“ 

N, 112◦ 4‘ 0“ W) for clear sky according to International 

Commission on Illumination, (CIE), which refers to less than 30 

% cloud cover, or none. To measure the daylight levels on the 

work plane, nine virtual light sensors were placed in the test cell 

to read the illuminance. Figure 1 shows the sensor placement in 

the model.  

As stated earlier, the intent of the simulated-based approach 

was firstly, to optimally regulate blind slat angles in order to 

achieve a unified light level on the defined work plane based on 

the desired-lux level which was set as 250 lux (IESNA Standard 

level for general office work at floor level) in this phase of 

study.  Secondly, to reduce the simulation time and automate the 

approach, simulation sets were limited to a minimum number of 

runs. These limited simulations include three different days that 

capture the variability of the solar movement over the year and 

day in summer, winter and fall, (summer and winter solstice and 
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autumnal equinox days): June 21, September 22 and December 

21. 

In addition, the simulation was done for three hours each 

day namely 10am, 12pm and 2pm, which capture the daily solar 

path inside the virtual office. 

The daylight simulations ran with only one window open 

with different blinds’ slat angles one at a time with other two 

windows closed. We assumed that illuminance level at a 

specific area is additive and the total lighting for the case 

whereas all three windows are open was calculated as the sum 

of the solar radiation contribution from separate simulation 

cases including north, west or south window open with different 

slat angles. All three windows were equipped with interior 

blinds (matte aluminum) which were movable from 0o (fully 

open) to 90o (fully closed) in 15o intervals (Figure 2). The 

reason for applying only downward slat angles was that it 

allows the occupants to have a view out, even if it is only a view 

of the sky. This will improve the level of visual comfort in the 

prediction algorithm. 

 
Figure 2. Different blind slat angle settings applied in this 

study. 
 

Analysis 

The daylight simulations for three chosen days which were 

run for all possible combinations that include all three window 

settings which are 73=343 (seven different angle positions and 

three windows) different combinations. A computer code was 

written to investigate the optimal blind slat settings based on 

uniform light level on work plane. The following section 

describes the calculation method for this step. 

Calculation of “Total Error” values for all blinds’ setting 

combinations: The control objective was to find the best blind 

slat settings for three windows that provides the most uniform 

illuminance level the work plane. A target of 250 Lux was 

defined to compare all simulated data provided by 9 sensors on 

the work plane for each combination. To achieve this goal, a 

Total Error (TE) value was calculated for each setting 

combination as:  

   

 
 

(1) 

 

Where Mean Square Error (MSE) is defined as: 

 

 

  

(2) 

With: 

: measured light level in lux by 9 sensors installed on the work plane 

: Average illuminance level of all sensors in lux 

n: number of sensors 

: Desired illuminance level in test cell model in lux 

 

The definition of TE implies that smaller values indicate to 

a more uniform illuminance situation on the work plane and 

larger values point to significant differences between 250 

desired lux level and illuminance levels read by 9 sensors on the 

work plane. The total error values were calculated for all 

possible blind setting combinations inside the test cell model 

which are 7 3 = 343 combinations, (3 windows and 7 blind stat 

settings for each window, (0o, 15o, 30o, 45o, 60o, 75o, 90o) on 

June 21st, September 22nd and December 21st. The fitness 

function was set to find the optimal combination for blind 

settings with smallest total error.  

As seen in Figure 3 to Figure 5, about 80% of all blind 

setting combinations show a TE value in a range of 90 to 200 

which indicates to a less uniform illuminance situation in the 

test cell on June 21st. However, for each hour, there are a few 

combinations with the smallest total error value, (TE values 60 

to 80) which represent the near-optimal blind setting 

combination for those specific hours on June 21st. 

Similar conclusions were reached for to September and 

December, [31]. About 90% of all blind setting combinations 

show a TE value in a range of 90 to 200 which indicates to a 

less uniformed illuminance situation in the test cell. However, 

for each hour, there are a few combinations with the smallest 

total error value (TE values 80 to 90) which represent the near-

optimal blind setting combination for those specific hours on 

September 22st. These blind slat angle combinations are then 

picked by the algorithm as best predicted optimal settings.  

 

 
Figure 3. Histogram Charts of total error values for all 

combinations in June 10am. 
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Figure 4. Histogram Charts of total error values for all 

combinations in June 12pm. 

 

 
Figure 5. Histogram Charts of total error values for all 

combinations in June 2pm. 

 

The results for December 21st indicate to larger values of TE 

among the 343 blind combinations, [31]. The reason for this 

could be the reduced daylight availability in winter time, thus 

the lower illuminance levels in the test cell. The few 

combinations with the smallest total error value (TE values 60 

to 80) represent the optimal blind setting combination on 

December 21st.  

One of the important aspects in controlling the blinds in an 

optimized setting is visual comfort. The amount of change in 

the blind slat angle in each setting needs to be minimized to 

avoid the distraction caused by blinds motor noise and visual 

discomfort. To achieve this goal, a cost function was defined 

that takes into account the total error values and the magnitude 

of changes in blinds slat angle. The cost function contains a 

factor α which is meant to weigh the relative importance of the 

total error and slat angle changes for the next setting.  

 

 

 

(3) 

 
Where the variables are defined as follows: 

: Weight factor 

: Current blinds slat angle for window A (north-side) 

: Current Blinds slat angle for window B (west-side) 

: Current blinds slat angle for window C (south-side) 

: Optimal blinds slat angle for window A 

: Optimal blinds slat angle for window B 

: Optimal blinds slat angle for window C 

 

The cost function has to be made as small as possible in 

order to maintain the most uniform lighting situation on the 

work plane with the smallest changes from one blind slat setting 

to the next one. When α=0, the cost function value equals to the 

smallest TE value without taking the slat angle changes into 

consideration. On the other, for α=1, the TE value weight factor 

is ignored and the objective would be to maintain the blind slat 

angle settings constant and to keep the cost function value close 

to zero. In other words, if α is 1 the blinds will be set on their 

optimal predicted setting based on smallest TE values in the 

morning, but then they will stay on the same position for the 

rest of the day.  

 

Table 1 illustrates the optimal blind slat setting angles based 

on smallest total error with α=0 where the algorithm operates 

only based on only smallest total error values without taking the 

blind slat angle changes into account. In this case, the cost 

function value is equal to the total error value.  

One of the interesting points in Table 1 is the average 

illuminance values of 9 sensors on the work plane. The selected 

blind slat angle combinations for the three windows in all three 

days indicate an average illuminance very close to the desired 

illuminance level which is 250 lux. This indirectly attests to the 

accuracy of the prediction algorithm. 

 

Table 1  

Optimal blind slat angle settings for three simulation days based 

on smallest cost function with α=0. 

Time TE 
Ave. 

Lux 

Window 

A North 

Window 

B West 

Window 

C South 

Cost 

Function 

Value 

June 10am 56 241 0 90 0 56 

June 12pm 78 224 0 30 30 78 

June 2pm 69 240 60 75 0 69 

Sep. 10am 75 258 45 15 0 75 

Sep.12pm 71 235 45 0 15 71 

Sep. 2pm 81 251 0 15 15 81 

Dec. 10am 73 233 45 90 0 73 

Dec. 12pm 74 234 45 0 15 74 

Dec. 2pm 60 248 45 0 15 60 
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Near-Optimal Control Setting Prediction  

A prediction method based on smallest (best) cost function 

values has been developed which includes two different 

approaches in order to predict best blind slat angle settings for 

three windows in the test cell model during a year and also 

during a chosen day. Thus, the prediction approach is divided 

into two different categories:  

 Yearly prediction approach 

 Daily prediction approach 

Yearly prediction approach:  For yearly predictions of the 

best blind settings, the weight factor α in the cost function 

equation is equal to zero (α = 0) since the amount of changes in 

blind slat angles are not significantly important for yearly 

prediction. Based on this fact, the cost function was defined 

based on the best TE values and the initial condition of all 

blinds have been set to zero, (Window A=0o, Window B=0o, 

Window C=0o).  

In this approach, TE values for the three simulated months, 

(June, September and December) were used to predict the near-

optimal blind settings for each randomly selected month. 

Figures show that if the optimal blind situation for three 

windows for each month  were to be applied on other 11 months 

of the year at the exact time of the day, the setting would also be 

one of the near-optimal settings for at least two month before 

and two months after that month. For example, the best 

simulated settings for December 10 am are (45o, 90o, 0o). The 

same setting would also be optimal for 10 for January, February, 

October and November, since the difference between TE values 

is not significant (smaller than 10%). 

 

 
Figure 6. Yearly prediction approach based on June 21st, 10am. 

The highlighted months show that by applying the optimal 

setting of June 21st on the same time of other 11 months the TE 

values for two months before and after June are very close to 

optimal setting’s TE value. 

 
Figure 7. Yearly prediction approach based on September 

22st, 10am. The highlighted months show that by applying the 

optimal setting of September 22st on the same time of other 11 

months the TE values for two months before and after 

September are very close to optimal setting’s TE value. 

 
Figure 8. Yearly prediction approach based on December 

21st, 10am. The highlighted months in green show that by 

applying the optimal setting of December 21st on the same 

time of other 11 months the TE values for two months before 

and after June are very close to optimal setting’s TE value. 

Daily prediction approach: To predict the near-optimal blind 

setting during a day and based on initial limited simulation runs, 

the weight factor α plays a very important role in the cost 

function, since it is responsible for changes in the blind slat 

angles thereby affecting visual comfort. Based on these criteria, 

the impacts of different values of α on cost function and optimal 

blind settings for three windows in June, September and 

December have been investigated. Furthermore, different values 

of weight factor α (0, 0.25, 0.5, 0.75) have been applied to the 

cost function to investigate their impact on optimal predicted 

blind slat angles and total error values. The results indicate that 

in all three simulated days when α=0.25 the optimal blind slat 
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settings for windows A, B and C (and also the total error values) 

are closest to the ideal situation when α=0. Therefore, for daily 

prediction approach, choosing α=0.25 would result in optimal 

TE values while meeting the requirement minimum blind slat 

angle changes. In this case cost function will be as follows: 

 
 

 

 

(4) 

 

 

Based on the above cost function, the optimal blind slat 

angles for June, September and December months have been 

calculated for each window as illustrated in Figure 9 to 11. 

The daily prediction method assumes that the start and final 

setting of blinds are zero degree (fully open blinds). Then, by 

interpolating the blind slat angle values at start point (9am), 

three simulated values (10am, 12pm and 2pm) and end point at 

4pm, the blind angle values for rest of the hours are predicted. 

Such an interpolation is a line that connects the given points to 

each other. 

To validate the daily prediction approach, the blind slat 

angles for some randomly picked hours have been predicted 

from the three set of graphs. Then, in order to determine the 

accuracy level of predicted values, a daylight simulation was 

run for those randomly chosen times. Total error values, 

average illuminance levels and blind slat settings of these 

chosen points have been compared to the best optimal situation 

conducted from the actual simulation data for those hours as 

shown in Tables 2 and 3. 

 

 

  

Figure 9. Predicted blind slat settings for the whole day, based 

on optimal settings in June 21, (10am, 12pm and 2pm) with 

α=0.25 in the cost function. 

 

  

Figure 10. Predicted blind slat settings for the whole day, 

based on optimal settings in September 22, (10am, 12pm and 

2pm) with α=0.25 in the cost function.  

 
 

Figure 11. Predicted blind slat settings for the whole day, 

based on optimal settings in December 21, (10am, 12pm and 

2pm) with α=0.25 in the cost function. 
 

Table 2 

Validation of predicted blind settings for June 21st , 9am, 11am 

and 1pm with comparing them to the best optimal settings 

resulted from actual simulation data for the same times with α = 

0.25. 

June 21st Time TE 
Ave. 

Lux 

Window 

A (North) 

Window 

B (West) 

Window 

C (South) 

Predicted 

Data 
9am 56 241 0 0 0 

Simulated 

Data 
9am 64 264 0 15 0 

Predicted 

Data 
11am 91 180 0 60 15 

Simulated 

Data 
11am 98 258 0 60 30 

Predicted 

Data 
1pm 73 233 0 30 30 

Simulated 

Data 
1pm 76 243 0 30 30 
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Table 3 

Validation of predicted blind settings for December 21st  9am, 

11am and 1pm with comparing them to the best optimal settings 

resulted from actual simulation data for the same times with α = 

0.25. 

December 

21st 
Time TE 

Ave. 

Lux 

Window 

A (North) 

Window 

B (West) 

Window 

C (South) 

Predicted 

Data 
9am 99 295 0 0 0 

Simulated 

Data 
9am 88 246 30 30 0 

Predicted 

Data 
11am 94 187 45 45 15 

Simulated 

Data 
11am 90 189 45 60 15 

Predicted 

Data 
1pm 60 248 45 0 15 

Simulated 

Data 
1pm 60 248 45 0 15 

 

We note from Table 2 and Table 3 that the total error values 

and average illuminance levels of blind settings based on daily 

prediction method and actual simulations on June 21st and 

December 21st are very close. The compared values indicate to 

a very small difference in total errors, average illuminance 

levels and blind slat angles between simulated and predicted 

data. This difference in TE values is about 15%, in average 

illuminance levels is about 10% and is ≤ 15o in blind slat angles. 

The experimental result confirm that the daily and yearly 

prediction approach is accurate when applied on randomly 

chosen days/month. The values suggest that the predicted 

optimal blind settings are providing the optimal average light 

levels and the most uniform lighting situation on the work plane 

in the virtual test cell environment.    

 

Validation of Predicting Control Algorithm 

To further validate the proposed control algorithm, it was 

implemented on a bigger scale test room. The virtual daylight 

model was then calibrated and fine-tuned based on actual 

measured data in test room which pertains to an 8 by 8 by 8 feet 

office area with seven 21 by 32 inches windows on the North, 

East, West and South walls (Figure 12). 

The active (in use) windows on north and west sides were 

equipped with two commercial SmartBlinds. The blinds were 

controlled through a computer remote system by a script written 

in C++ which could regulate and set the blind slat angles based 

on control algorithm commands. 

 

 
Figure 12. The view of test room on the roof of design 

building north in Tempe campus. 

 

 
Figure 13. Plan and section of the test room. 

 

 
Figure 14. Active and 

inactive windows in test 

room. 

 
 

Figure 15. View of windows 

inside test room with measuring 

equipment. 

 

After the virtual model was set up, the developed blind slat 

control algorithm was implemented on the test room based on 

three limited day simulation method and calculation of total 

error for each blind combination. The near-optimal predicted 

blind angles have been implemented on the blinds on test room 

for a chosen day and the lighting situation inside the test room 

was investigated. 
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Calibration of RadianceIES Lighting Model: To verify the 

reliability of the lighting program used, the actual daylight 

levels in test cell have been measured on April 29th from 9am to 

5pm. The actual illuminance levels in test room have been 

measured and recorded by 9 wireless sensor motes distributed 

in the room similar to the 9 sensor locations. These measured 

data have then been compared to simulated illuminance data. 

Some small changes were made to the virtual model materials in 

order to fine tune the data to match the experimental 

measurements.  

Measured and simulated illuminance data resulted from 

motes inside the test room and simulations indicate that both 

data sets follow the same trend. However, measured data have 

greater values compared to simulated data. This offset value 

changes for different blind setting combinations for window 

North and West and for different time of the day. Thus, 

simulated and measured lighting data from 49 tested 

combinations (7 blinds slat setting times two windows=72) 

including two active windows on north and west sides have 

been compared together. For linear approximation of the data, 

least squares method was applied. In other words the square 

root of the error was minimized: 

 

  (5) 

 

Based on this comparison, an offset value and a gain factor 

were determined as follows: 

 

 

 

(6) 

Where: 

Offset value= 125 Lux 

Gain factor= 0.28 

 

The regression analysis found the offset value for the all 49 

combinations to be 125 lux and the gain factor to be 0.28. The 

offset value and gain factor bring the two measured and 

simulated illuminance level curves closer together. However, in 

some cases, such as 14 pm when North window’s blind slats 

were set on 0o (open) and West window’s blind slats were set on 

90o (closed), the measured data point to a very high illuminance 

values caused by direct solar radiation on a specific sensor mote 

at a specific time of the day, these two curves differ 

significantly. This is because the lighting software is not able to 

simulate the exact value of illuminance at these points which 

could be referred to the difference between actual weather data 

on April 29th which was partly cloudy and weather file data 

uploaded and used in the software for sky harbor international 

airport weather file.  

Validation of Developed Prediction Algorithm: The 

prediction methodology has been implemented on a test room 

virtual model in order to achieve optimal blind slat settings. 

Furthermore, the results of simulations were applied on the test 

room to investigate whether the near-optimal blind slat settings 

are also optimal in an actual test environment. 

The experiment was done on December 3rd from 9am to 

2pm with an overcast sky condition. Based on the fitness 

function with total errors and a weight factor of 0.25, the 

optimal blind angles settings for two windows on December 3 

from 9am to 2pm were conducted. The optimal blind slat angles 

for two windows in the test room are as assembled in Table 4. 

 

Table 4 

Near-Optimal predicted blind slat angles for December 3rd 

based on developed prediction algorithm. 

December 

3rd  

Time 

TE 
Ave. 

Lux* 

Window A 

(North) 

Window B 

(West) 

9am 212 136 60 60 

10am  200 139 60 45 

11am 187 143 60 45 

12pm 182 144 60 45 

1pm 182 145 60 60 

2pm 195 141 60 45 

 Average lux* is the value before applying the 0.28 gain factor and 

125 lux offset value. 

 

The predicted blind slat angles for December 3rd were then 

applied on the two SmartBlinds inside the test room and the 

light levels on 9 sensor motes have been recorded, (Table 4). In 

order to find out if these settings are near-optimal settings in 

actual test environment, blind slats has been changed in steps of  

±15o in upward and downward directions for both windows to 

compare the average lighting levels with more open and less 

open blinds in each case. These results are shown in Table 5. 

 

Table 5 

The lighting situation inside the test room after applying the 

optimal blind slat setting and ±15 degree on two windows on 

December 3rd. 

Slat 

Angle 

December 

3rd 

Ave. 

Lux* 
TE 

Window 

A (North) 

Window 

B (West) 

-15º 9am 45 206 75 75 

Optimal 9am 142 114 60 60 

+15º 9am 106 147 45 45 

-15º 10am 60 192 75 60 

Optimal 10am 116 155 60 45 

+15º 10am 86 177 45 30 

-15º 11am 95 153 75 60 
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Slat 

Angle 

December 

3rd 

Ave. 

Lux* 
TE 

Window 

A (North) 

Window 

B (West) 

Optimal 11am 132 126 60 45 

+15º 11am 121 148 45 30 

-15º 12pm 108 128 75 60 

Optimal 12pm 150 119 60 45 

+15º 12pm 140 149 45 30 

-15º 1pm 104 158 75 75 

Optimal 1pm 201 97 60 60 

+15º 1pm 140 125 45 45 

-15º 2pm 
127 

 

143 

 

75 60 

Optimal 2pm 
220 

 

104 60 45 

+15º 2pm 189 134 45 30 

** After applying the 0.28 gain factor and 125 Lux offset value. 

 

As shown in Table 5, the average illuminance of 9 sensors in 

the test room and the total error values which were calculated 

based on 250 desired lux level, are displayed for December 3rd. 

The middle values in highlighted cells illustrate the near-

optimal predicted angle setting for the blind slats. The other two 

values display the lighting situation when the slat angle changes 

15o upwards and downwards which show the more open and 

less open blind situations. 

According to the average lux levels and total error values 

listed in the Table 5, the optimal blind slat angle in all cases 

indicate an average lighting value closer to the desired lighting 

level and smaller TE values which imply an ideal uniformed 

lighting situations on the work-plane inside the room.    

CONCLUSIONS 
This study led us to conclude that the predicted blind 

settings based on daily and yearly prediction methodologies 

also predict the near-optimal blind slat settings in similar 

building spaces. This methodology could be applied as an initial 

baseline setting for lighting control in buildings during the 

conceptual design process.  

This algorithm provides an initial baseline setting for an 

integrated control algorithm which will spare us a significant 

amount of time in fine-tuning the control algorithm in the 

experimental steps.  

The main goal of this research study was to report the 

results in designing a self-managing algorithm to enhance the 

capabilities of control systems by almost completely automating 

their deployment and operation by empowering them to adapt to 

environmental changes. A future progress would include the 

development of an adaptive integrated lighting algorithm for an 

office building that saves significant amount of electrical 

energy. 
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